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Dynamic Programming

Recursive Equations
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Introduction and Objectives

Introduction

Recursive equations are used to solve a problem in sequence

These equations are fundamental to the dynamic programming

Objectives

To formulate recursive equations for a multistage decision 
process

In a backward manner and 

In a forward manner
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Recursive Equations

Recursive equations are used to structure a multistage decision 
problem as a sequential process
Each recursive equation represents a stage at which a decision 
is required
A series of equations are successively solved, each equation 
depending on the output values of the previous equations
A multistage problem is solved by breaking into a number of 
single stage problems through recursion
Approached can be done in a backward manner or in a forward 
manner
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Backward Recursion

A problem is solved by writing equations first for the final stage and 
then proceeding backwards to the first stage
Consider a serial multistage problem

Let the objective function for this problem is 
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Backward Recursion …contd.

The relation between the stage variables and decision variables are 
St+1 = g(Xt, St),     t = 1,2,…, T.

Consider the final stage as the first sub-problem. The input variable to 
this stage is ST. 
Principle of optimality: XT should be selected such that                  is 
optimum for the input ST

The objective function        for this stage is 

Next, group the last two stages together as the second sub-problem. 
The objective function is 
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Backward Recursion …contd.

By using the stage transformation equation,                can be rewritten 
as

Thus, a multivariate problem is divided into two single variable
problems as shown
In general, the i+1th sub-problem can be expressed as

Converting this to a single variable problem 
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Backward Recursion …contd.

denotes the optimal value of the objective function for 
the last i stages

Principle of optimality for backward recursion can be stated as,

No matter in what state of stage one may be, in order 
for a policy to be optimal, one must proceed from that 
state and stage in an optimal manner sing the stage 
transformation equation

∗
−− )1(iTf



D Nagesh Kumar, IISc Optimization Methods: M5L28

Forward Recursion

The problem is solved by starting from the stage 1 and proceeding 
towards the last stage
Consider a serial multistage problem

Let the objective function for this problem is 

Stage 1 Stage t Stage T
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Forward Recursion …contd.

The relation between the stage variables and decision variables are 

where St is the input available to the stages 1 to t
Consider the stage 1 as the first sub-problem. The input variable to 
this stage is S1

Principle of optimality: X1 should be selected such that                  is 
optimum for the input S1

The objective function        for this stage is 
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Backward Recursion …contd.

Group the first and second stages together as the second sub-
problem. The objective function is 

By using the stage transformation equation,               can be rewritten 
as

In general, the ith sub-problem can be expressed as
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Backward Recursion …contd.

Converting this to a single variable problem

denotes the optimal value of the objective function for the 
last i stages
Principle of optimality for forward recursion can be stated as, 

No matter in what state of stage one may be, in order 
for a policy to be optimal, one had to get to that state 
and stage in an optimal manner
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Thank You


