GEOSYNTHETICS ENGINEERING: IN THEORY AND PRACTICE

Prof. J. N. Mandal

Department of Civil Engineering, IIT Bombay, Powai, Mumbai 400076, India.
Tel.022-25767328
email: cejnm@civil.iitb.ac.in
Module - 1
LECTURE - 5
INTRODUCTION TO REINFORCED EARTH

Prof. J. N. Mandal, Department of Civil Engineering, IIT Bombay
RECAP of previous lecture.....

- Standard Analysis of Reinforced Earth
 - Internal local stability
 - Critical slip surface for inextensible reinforcement
 - Critical slip surface for extensible reinforcement
 - Calculation of maximum tensile forces in the reinforcement layers
 - Design an inextensible steel reinforced soil retaining wall (partly covered)
Calculation of eccentricity at base (e):

\[
e = \frac{L}{2} - \frac{M_R - M_o}{W_r}
\]

\[
M_R = W_r \times L/2 = 1077.3 \times (6.3/2) = 3393.495 \text{ kN-m/m}
\]

\[
M_o = F_a \times H/3 + F_q \times H/2
\]

\[
= (256.5 \times 9/3 + 30 \times 9/2) \text{ kN-m/m}
\]

\[
= 904.5 \text{ kN-m/m}
\]

\[
e = \frac{6.3}{2} - \left(\frac{3393.495 - 904.5}{1077.3}\right) = 0.839599 < \left(\frac{L}{6} = 1.05\right) \quad \text{(OK)}
\]

Factor of safety against overturning,

\[
FS_{\text{overturning}} = \frac{M_R}{M_o} = \frac{3393.495}{904.5} = 3.75 > 2 \quad \text{(OK)}
\]
Geosynthetics Engineering: In Theory and Practice

Stresses on Foundation Soil

Forces Acting on Reinforced Soil Wall

Prof. J. N. Mandal, Department of Civil Engineering, IIT Bombay
Calculation of bearing pressure at base

Effective length = (L - 2e)

Total vertical pressure over the foundation soil = σ_v

$$\sigma_v = \frac{\sum V}{L - 2e} = \frac{W_r + W_q}{L - 2e}$$

$$\sigma_v = \frac{1077.3 + 63}{6.3 - 2 \times 0.84} = 246.78 \text{ kPa} < 300 \text{ kPa}$$ (OK)

Given allowable bearing capacity of foundation soil = 300 kPa
Step 3: Check internal stability

The complete calculations along the entire height at each reinforcement level are presented in a tabular form at the end.

The hand calculations for internal stability are performed at a depth, $z = 4.875$ m.

$$K_{ar} = \tan^2(45^\circ - \phi_r / 2) = \tan^2(45^\circ - 32^\circ / 2) = 0.307$$

As $z < 6$ m ($z = 4.875$ m), from interpolation,

$$K_r = K_{ar} \left[1.2 + 0.5 \times \frac{(6-z)}{6} \right] = 0.398$$
Variation of stress ratio with depth

Prof. J. N. Mandal, Department of Civil Engineering, IIT Bombay
Calculation for K_r when $z < 6$ m:

\[
\frac{x}{6-z} = \frac{0.5}{6}
\]

\[
x = 0.5 \times \frac{6-z}{6}
\]

\[
\frac{K_r}{K_{ar}} = 1.2 + 0.5 \times \frac{6-z}{6}
\]

\[
K_r = K_{ar} \left[1.2 + 0.5 \times \frac{6-z}{6} \right]
\]

Therefore, at $z = 4.875$ m,

\[
K_r = 0.307 \left[1.2 + 0.5 \times \frac{6-4.875}{6} \right] = 0.398
\]
Now, at this level vertical pressure (σ_v)

$$\sigma_v = \gamma_r \times z + q = 19 \times 4.875 + 10 = 102.625 \text{ kPa}$$

Horizontal pressure (σ_h)

$$\sigma_h = K_r \times \sigma_v = 0.398 \times 102.625 = 40.795 \text{ kPa}$$

Consider tributary area (A_t) over twice the panel width to determine the horizontal spacing among reinforcements and check the pull-out criteria.

$$A_t = 2 \times \text{panel width} \times S_v = 2 \times 1.5 \times 0.75 = 2.25 \text{ m}^2$$

The maximum horizontal force on this tributary area (T_{max})

$$= \sigma_h \times A_t = 40.795 \times 2.25 = 91.789 \text{ kN}$$
Considering factor of safety against pull-out failure \((FS_{\text{pull-out}}) \geq 1.5\),

Pull-out resistance \((P_R) \geq 1.5 \times T = 1.5 \times 91.789 = 137.683\ kN\)

If the minimum number of reinforcements required in the tributary area to achieve the pullout resistance = \(N\)

\[
N = \frac{P_R}{2 \times b \times F^* \times L_e \times \sigma'_v}
\]

\(b = \text{width of reinforcement strip} = 50\ mm\)
\(L_e = \text{embedded length of reinforcement} = L - L_a\)
\(\sigma'_v = \text{vertical pressure ignoring the surcharge pressure}\)

\(F^* = 1.2 + \log C_u\ \text{at the top of the structure} = 2\ \text{(maximum)}\)
\(= \tan\phi'\ \text{(at } z \geq 6\ m)\)
Variation of friction factor (F^*) with depth

As $z < 6$ m, From interpolation

$$F^* = \tan \phi_r + \frac{(2 - \tan \phi_r)(6 - z)}{6}$$

$$F^* = \tan 32^\circ + \frac{(2 - \tan 32^\circ)(6 - 4.875)}{6} = 0.883$$

Prof. J. N. Mandal, Department of Civil Engineering, IIT Bombay
As $z > H/2 = 4.5$ m,

$L_a = \text{length of reinforcement in active zone}$
$= 0.6(H - Z) \quad \text{[From interpolation]}$
$= 0.6 \times (9 - 4.875)$
$= 2.475 \text{ m}$

$L_e = L - L_a = 6.3 - 2.475 = 3.825 \text{ m}$

$\sigma_v' = \text{vertical pressure at this level ignoring the surcharge pressure} = (102.625 - 10) = 92.625 \text{ kPa}$

$N = \frac{P_R}{2 \times b \times F^* \times L_e \times \sigma_v'} = \frac{137.683}{2 \times 0.05 \times 0.883 \times 3.825 \times 92.625} = 4.403$

Prof. J. N. Mandal, Department of Civil Engineering, IIT Bombay
For $z > H/2$

$y = (z - H/2)$

$(0.3\ H)/(H/2) = L_a/(H/2 - y)$

$0.6 = L_a/[(H/2) - y]$

$L_a = 0.6[(H/2) - y]$

$L_a = 0.6[(H/2) - (z - (H/2))]$

$L_a = 0.6(H-z)$
Hence, \(N_{\text{actual}} = 5 \) (it should be an integer)
In the tributary area 5 numbers of strips should be provided in a row.

Approximate horizontal spacing \((S_h) \) can be

\[
= \frac{(2 \times \text{panel width})}{N} = \frac{(2 \times 1.5)}{5} = 0.6 \text{ m}
\]

Now, the corrected pull-out resistance \(P_{R(\text{actual})} \)

\[
= 2 \times b \times F^* \times L_e \times \sigma_v' \times N_{\text{actual}}
\]

\[
= 2 \times 0.05 \times 0.883 \times 3.825 \times 92.625 \times 5
\]

\[
= 156.367 \text{ kN}
\]

Therefore, factor of safety against pull-out failure,

\[
FS_{\text{pull-out}} = \frac{P_{R(\text{actual})}}{T} = \frac{156.367}{91.789} = 1.704
\]

Prof. J. N. Mandal, Department of Civil Engineering, IIT Bombay
Step 4: Calculation of stress in metallic strip during design life

Initial thickness of the metallic strip reinforcement made of steel including the zinc coating of 0.086 mm = 5 mm

According to FHWA (1990), the thickness losses per year are as follows:

- zinc loss = 0.015 mm/year (first 2 years)
 = 0.004 mm/year (thereafter)
- steel loss = 0.012 mm/year/ side (thereafter)
Time for complete zinc loss
= 2 years + \([0.086 - 2 \times 0.015]/0.004]\) = 16 years

Steel loss will be for \((75 - 16) = 59\) years during design life.

Total thickness loss during design life \((t_{\text{loss}})\)
= \(2 \times 0.012 \times 59 = 1.416\) mm

Remained thickness \((t_{\text{remained}})\)
= \(5 - 1.416 = 3.584\) mm = 0.003584 m

Remained cross-section after design life of 75 years \((A_c)\)
= \(0.003584 \times 0.05 = 0.0001792\) m²
f_y = 413.7 MPA (60 grade steel)

f_{allowable} = 0.55 (f_y) = 227.5 MPA

The tensile stress (f_s) in each strip,

\[
f_s = \frac{T}{N \times A_c} = \frac{91.789}{5 \times 0.0001792} = 102.44 \text{ MPA} < 227.5 \text{ MPA}
\]

(OK)
<table>
<thead>
<tr>
<th>Depth (z) (m)</th>
<th>Vertical pressure (kPa)</th>
<th>(K_a)</th>
<th>(K_r)</th>
<th>Horizontal Pressure (kPa)</th>
<th>(F^*)</th>
<th>(L_a) (m)</th>
<th>(L_e) (m)</th>
<th>Max. hor. force/trib. area ((T_{max})) (kN)</th>
<th>(P_R) (kN)</th>
<th>(N) strips per trib. area</th>
<th>(N_{actual})</th>
<th>Approx hor. spacing ((S_h)) (m)</th>
<th>(P_{R(actual)}) (kN)</th>
<th>Tensile stress, (f_s) (MPA)</th>
<th>FS pullout</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.375</td>
<td>17.125</td>
<td>0.307</td>
<td>0.513</td>
<td>8.781</td>
<td>1.914</td>
<td>2.7</td>
<td>3.6</td>
<td>19.756</td>
<td>29.64</td>
<td>6.04</td>
<td>7</td>
<td>0.43</td>
<td>34.367</td>
<td>15.75</td>
<td>1.740</td>
</tr>
<tr>
<td>1.125</td>
<td>31.375</td>
<td>0.307</td>
<td>0.494</td>
<td>15.49</td>
<td>1.742</td>
<td>2.7</td>
<td>3.6</td>
<td>34.840</td>
<td>52.26</td>
<td>3.89</td>
<td>4</td>
<td>0.75</td>
<td>53.624</td>
<td>48.61</td>
<td>1.539</td>
</tr>
<tr>
<td>1.875</td>
<td>45.625</td>
<td>0.307</td>
<td>0.474</td>
<td>21.64</td>
<td>1.570</td>
<td>2.7</td>
<td>3.6</td>
<td>48.693</td>
<td>73.04</td>
<td>3.63</td>
<td>4</td>
<td>0.75</td>
<td>80.555</td>
<td>67.93</td>
<td>1.654</td>
</tr>
<tr>
<td>2.625</td>
<td>59.875</td>
<td>0.307</td>
<td>0.455</td>
<td>27.25</td>
<td>1.398</td>
<td>2.7</td>
<td>3.6</td>
<td>61.314</td>
<td>91.97</td>
<td>3.66</td>
<td>4</td>
<td>0.75</td>
<td>100.43</td>
<td>85.54</td>
<td>1.638</td>
</tr>
<tr>
<td>3.375</td>
<td>74.125</td>
<td>0.307</td>
<td>0.436</td>
<td>32.31</td>
<td>1.226</td>
<td>2.7</td>
<td>3.6</td>
<td>72.704</td>
<td>109.06</td>
<td>3.85</td>
<td>4</td>
<td>0.75</td>
<td>113.25</td>
<td>101.43</td>
<td>1.558</td>
</tr>
<tr>
<td>4.125</td>
<td>88.375</td>
<td>0.307</td>
<td>0.417</td>
<td>36.83</td>
<td>1.055</td>
<td>2.7</td>
<td>3.6</td>
<td>82.862</td>
<td>124.29</td>
<td>4.18</td>
<td>5</td>
<td>0.6</td>
<td>148.78</td>
<td>92.48</td>
<td>1.795</td>
</tr>
<tr>
<td>4.875</td>
<td>102.625</td>
<td>0.307</td>
<td>0.398</td>
<td>40.8</td>
<td>0.883</td>
<td>2.475</td>
<td>3.825</td>
<td>91.789</td>
<td>137.68</td>
<td>4.40</td>
<td>5</td>
<td>0.6</td>
<td>156.37</td>
<td>102.44</td>
<td>1.704</td>
</tr>
<tr>
<td>5.625</td>
<td>116.875</td>
<td>0.307</td>
<td>0.378</td>
<td>44.22</td>
<td>0.711</td>
<td>2.025</td>
<td>4.275</td>
<td>99.484</td>
<td>149.23</td>
<td>4.6</td>
<td>5</td>
<td>0.6</td>
<td>162.38</td>
<td>111.03</td>
<td>1.632</td>
</tr>
<tr>
<td>6.375</td>
<td>131.125</td>
<td>0.307</td>
<td>0.369</td>
<td>48.35</td>
<td>0.625</td>
<td>1.575</td>
<td>4.725</td>
<td>108.781</td>
<td>163.17</td>
<td>4.56</td>
<td>5</td>
<td>0.6</td>
<td>178.81</td>
<td>121.41</td>
<td>1.644</td>
</tr>
<tr>
<td>7.125</td>
<td>145.375</td>
<td>0.307</td>
<td>0.369</td>
<td>53.60</td>
<td>0.625</td>
<td>1.125</td>
<td>5.175</td>
<td>120.603</td>
<td>180.90</td>
<td>4.13</td>
<td>5</td>
<td>0.6</td>
<td>218.88</td>
<td>134.60</td>
<td>1.815</td>
</tr>
<tr>
<td>7.875</td>
<td>159.625</td>
<td>0.307</td>
<td>0.369</td>
<td>58.86</td>
<td>0.625</td>
<td>0.675</td>
<td>5.625</td>
<td>132.425</td>
<td>198.64</td>
<td>3.78</td>
<td>4</td>
<td>0.75</td>
<td>210.37</td>
<td>184.74</td>
<td>1.589</td>
</tr>
<tr>
<td>8.625</td>
<td>173.875</td>
<td>0.307</td>
<td>0.369</td>
<td>64.11</td>
<td>0.625</td>
<td>0.225</td>
<td>6.075</td>
<td>144.246</td>
<td>216.37</td>
<td>3.48</td>
<td>4</td>
<td>0.75</td>
<td>248.83</td>
<td>201.24</td>
<td>1.725</td>
</tr>
</tbody>
</table>

Prof. J. N. Mandal, Department of Civil Engineering, IIT Bombay
Conventional systems

Gravity Retaining Wall

Cantilever Retaining Wall

Sheet Pile Wall

Braced Excavation

Soil Nailing

Prof. J. N. Mandal, Department of Civil Engineering, IIT Bombay
Mechanically stabilized reinforced earth using metal strips

- High Cost
- Long term susceptibility to corrosion.
- Sustainability depends on the correct choice of Backfill material (i.e. gradation, chemical properties etc.)
- Cannot be used with many indigenous materials.
- Back fill material cost is about 30 to 40% of the total cost of the reinforced soil wall.

Prof. J. N. Mandal, Department of Civil Engineering, IIT Bombay
It is preferable to use non corrosive materials like polymer geosynthetics as a reinforcement.

- Polymer does not corrode,
- Economical, and
- Used with many other indigenous materials
Please let us hear from you

Any question?

Prof. J. N. Mandal, Department of Civil Engineering, IIT Bombay
Prof. J. N. Mandal

Department of civil engineering, IIT Bombay, Powai, Mumbai 400076, India.
Tel. 022-25767328
email: cejnm@civil.iitb.ac.in

THANKS FOR LISTENING