Geosynthetics Engineering: In Theory & Practice

Prof. J. N. Mandal
Department of Civil Engineering,
IIT Bombay

Lecture No - 30
GEOSYNTHETICS ENGINEERING: IN THEORY AND PRACTICE

Prof. J. N. Mandal

Department of civil engineering, IIT Bombay, Powai, Mumbai 400076, India.
Tel. 022-25767328
email: cejnm@civil.iitb.ac.in
Module - 6
LECTURE - 30
Geosynthetics for reinforced soil retaining walls
Recap of previous lecture.....

Example: Design of geogrid reinforced soil wall under static loading
II) Check for seismic loading:

\[q = q_c + q_D \]

\[0.7H = 10.5 \text{ m} \]

\[0.5H = 7.5 \text{ m} \]

\[0.7H = 10.5 \text{ m} \]

\[H = 15 \text{ m} \]

\[z = 10.5 \text{ m} \]

\[d_i = 4.5 \text{ m} \]

\[(45^\circ + \Phi/2) \]

\[0.7H = 10.5 \text{ m} \]

\[F_D \text{ (Seismic load)} \]

\[q_h \]

\[P_{ab \sin \theta_h} \]

\[P_{ab \cos \theta_h} \]

\[0.6H \]

\[V \tan \theta + C_{af} x L \]

\[C_f = 0.6 \]

Prof. J. N. Mandal, Department of Civil Engineering, IIT Bombay
Seismic thrust \((P_{\text{AE}}) = 0.375 \times \alpha_m \times \gamma_b \times H^2 \)

\[\alpha_m = (1.45 - \alpha_o) \alpha_o \]

\(\alpha_o = \text{Basic horizontal seismic co-efficient} \quad = 0.05 \text{ (given for zone II)} \)

\(\gamma_b = \text{unit weight of the backfill soil} = 17.5 \text{ kN/m}^3 \)

\(H = \text{height of the reinforced wall} = 15 \text{ m} \)

Therefore,

\[\alpha_m = (1.45 - 0.05) \times 0.05 = 0.07 \]

\[P_{\text{AE}} = 0.375 \times \alpha_m \times \gamma_b \times H^2 = 0.375 \times 0.07 \times 17.5 \times 15^2 \]
\[= 103.36 \text{ kN/m} \]
Horizontal inertia force \((P_{IR}) = \alpha_m \times \gamma_r \times H \times L_{\text{max}} \)

- 50% of \(P_{IR} \) should be considered.

\[\gamma_r = \text{unit weight of the reinforced soil} = 18.5 \text{ kN/m}^3 \]

\[L_{\text{max}} = 10.5 \text{ m} \]

Hence, \(P_{IR} = 0.07 \times 18.5 \times 15 \times 10.5 = 203.96 \text{ kN/m} \)
Total dynamic force on the retaining wall \((F_D) \)
\[
= P_{AE} + 50\% \ P_{IR}
\]
\[
= (103.36 + 0.5 \times 203.96) \text{ kN/m}
\]
\[
= 205.34 \text{ kN/m}
\]

- \(F_D \) will act at a distance 0.6H from the bottom of the wall.

Overturning moment due to dynamic force \((M_{OD}) \)
\[
= F_D \times 0.6 \ H
\]
\[
= (205.34 \times 0.6 \times 15)
\]
\[
= 1848.07 \text{ kN/m}
\]
A) Check for sliding:

Total driving force including dynamic force \((F_{\text{total}})\)
\[= F_{\text{static}} + F_D = (727.44 + 205.34) \text{ kN/m} \]
\[= 932.78 \text{ kN/m} \]

Total resisting force \((R)\)
\[= 1578.815 \text{ kN/m (previously calculated)} \]

Factor of safety against sliding
\[= \frac{R}{F_{\text{total}}} \]
\[= \frac{1578.815}{932.78} \]
\[= 1.693 > (0.75 \times 1.5 = 1.125) \text{ (Safe)} \]
B) Check for overturning:

Total overturning moment including overturning moment due to dynamic force $(M_o)_{total}$

\[
(M_o)_{static} + M_{OD} = 4105.35 + 1848.07 = 5953.416 \text{ kN/m}
\]

Total resisting force (M_r)

\[
M_r = 20855.09 \text{ kN/m (previously calculated)}
\]

Factor of safety against resisting moment

\[
= \frac{M_r}{(M_o)_{total}} = \frac{20855.09}{5953.416} = 3.5 > (0.75 \times 2 = 1.5) \text{ (Safe)}
\]
C) Check for bearing capacity:

As the wall is safe against bearing capacity failure for static case, it is safe even considering the seismic condition.
Example:

Design a pre-cast segmental block retaining wall of height 8 m with geogrid as reinforcement.

- Coverage ratio (C_r) = 1
- Length to height ratio (L/H) ≥ 0.7 (i.e., $L \geq 5.6$ m)
- Surcharge load (q) = 18 kN/ m2
- Allowable tensile strength of geogrid (T_a) = 38 kN /m
- For connection of geogrid with segmental block, connection strength (T_c) = 34 kN/m
- Interaction coefficient (C_i) = 0.85
- Foundation bearing pressure = 700 kN /m2
Properties of backfill soil
- Angle of internal friction of backfill soil (ϕ_b) = 33°
- Unit weight of backfill soil (γ_b) = 18 kN/m3

Properties of reinforced soil
- Angle of internal friction of reinforced soil (ϕ_r) = 24°
- Unit weight of reinforced soil (γ_r) = 20 kN/m3

Foundation soil properties:
- Angle of shearing resistance between soil and reinforcement (δ_f) = 26°
- Cohesion = 0 kPa,
- Bearing capacity = 700 kPa
Precast concrete segmental retaining wall

Prof. J. N. Mandal, Department of Civil Engineering, IIT Bombay
Solution:

A) External Stability

Step 1: Calculation of Coefficient of Earth pressure for backfill soil.

\[K_{ab} = \frac{1 - \sin \phi_b}{1 + \sin \phi_b} \]

\(K_{ab} = \text{Coefficient Earth pressure of backfill soil.} \)

\(\phi_b = \text{Angle of internal friction of backfill soil} = 33^\circ \)

\[K_{ab} = \frac{1 - \sin 33^\circ}{1 + \sin 33^\circ} = 0.294 \]
Step 2: Calculation of horizontal driving force due to backfill soil and surcharge.

Distribution of horizontal Earth pressure due to backfill and Surcharge

Prof. J. N. Mandal, Department of Civil Engineering, IIT Bombay
Horizontal driving force due to backfill soil \((P_1)\)

\[
P_1 = 0.5 K_{ab} \gamma_b H^2
\]

- \(K_{ab} = \text{Coefficient of earth pressure for backfill soil} = 0.294\)
- \(\gamma_b = \text{Unit weight of backfill soil} = 18 \text{ kN/m}^3\)
- \(H = \text{Height of the retaining wall} = 8 \text{ m}\)

\[
P_1 = 0.5 \times 0.294 \times 18 \times 8^2 = 169.34 \text{ kN /m}
\]
Horizontal driving force due to surcharge (P_2)

$$P_2 = q \times K_{ab} \times H$$

$q = \text{surcharge load} = 18 \text{ kN/m}^2$

$K_{ab} = \text{Coefficient of earth pressure for backfill soil} = 0.294$

$H = \text{Height of the retaining wall} = 8 \text{ m}$

$$P_2 = 18 \times 0.294 \times 8 = 42.33 \text{ kN/m}$$
Step 3: Calculation of total horizontal driving force

Total horizontal force \((P) = P_1 + P_2\)

\(P_1 = \text{Horizontal force due to backfill soil} = 169.34 \text{ kN/m}\)

\(P_2 = \text{Horizontal force due to surcharge} = 42.33 \text{ kN/m}\)

Total horizontal driving force \((P)\)

\[= 169.34 + 42.33\]

\[= 211.67 \text{ kN/m}\]
Step 4: Calculation of resisting force

\[\mu = \text{static co-efficient of friction} \]

\[W = \text{total weight of the reinforced soil} \]

\[\text{Total resisting force} = \mu \times W \]

\[L = \text{Length of geogrid} \]
\[\mu = \tan \delta_f = \tan 26^\circ = 0.4877 \]

\[W = \gamma_r \times H \times L = 20 \times 8 \times L \]

\[\delta_f = \text{Angle of shearing resistance between soil and reinforcement} \ 26^\circ \]

\[\gamma_r = \text{Unit weight of reinforced soil} = 20 \text{ kN/m}^3 \]

\[H = \text{Height of the retaining wall} = 8\text{m} \]

\[L = \text{Length of geogrid.} \]

Total Resisting force

\[= \mu \times W = 0.487 \times 20 \times 8 \times L = (77.92 \times L) \text{ kN/m} \]
Step 5: Check for Factor of safety against sliding.

Minimum Factor of safety against sliding = 1.5

\[FOS = \frac{\text{Resisting force}}{\text{Sliding force}} \]

Resisting force = \((77.92 \times L)\) kN/m

Driving force = 211.67 kN/m

Hence, \(1.5 = \frac{77.92 L}{211.67}\)

\(L = 4.068 m < 5.6 m (0.7H)\) (OK)

Therefore, adopt the length of geogrid = 5.6 m
Step: 6 Calculation of length of geogrid based on overturning criterion

Minimum factor of safety against overturning = 2

\[(F.S.)_{\text{Overturning}} = \frac{\text{Stabilizing moment}}{\text{Overturning moment}}\]

\[W = \text{weight of reinforced soil}\]

\[L = \text{length of geogrid in reinforced soil zone}\]
Stabilizing moment (M_s):

$$M_s = \frac{W \times L}{2}$$

$$W = H \times \gamma_r \times L$$

$H = \text{height of retaining wall} = 8 \text{ m}$

$\gamma_r = \text{unit weight of reinforced soil} = 20 \text{ kN/m}^3$

$L = \text{length of geotextile in reinforced soil zone}$

$$M_s = \frac{H \times \gamma_r \times L \times L}{2} = \frac{8 \times 20 \times L^2}{2} = 80L^2 \text{ kNm / m}$$

Prof. J. N. Mandal, Department of Civil Engineering, IIT Bombay
Overturning moment \((M_o)\):

\[M_o = (P_1 \times h_1) + (P_2 \times h_2)\]

- \(P_1\) = horizontal force due to backfill soil
- \(P_2\) = horizontal force due to surcharge soil
- \(h_1\) = distance of horizontal force \((P_1)\) from the base of wall
 = \(H/3 = 8/3\) m
- \(h_2\) = distance of horizontal force \((P_2)\) from the base of wall
 = \(H/2 = 8/2\) m

Hence,

\[M_o = \left(169.34 \times \frac{8}{3}\right) + \left(42.33 \times \frac{8}{2}\right) = 620.8\ \text{kNm} / \text{m}\]
Factor of safety against overturning,

\[(F.S.)_o = \frac{M_s}{M_o}\]

\[2 = \frac{80 \times L^2}{620.8}\]

\[L = 3.93 \text{ m}\]

\[L = 3.93 \text{ m} < 5.6 \text{ m} (0.7H)\]

Therefore, adopt the length of geogrid = 5.6 m

Step: 7 Check for bearing pressure

\[(F.S.)_{B.C.} = \frac{\text{Allowable bearing pressure}}{\text{Actual bearing pressure}} \]

Allowable bearing pressure = 700 kN/m\(^2\) (Given)
Bearing capacity

Prof. J. N. Mandal, Department of Civil Engineering, IIT Bombay
Actual bearing pressure = \[
\frac{(\gamma_r \times H \times L) + (q \times L)}{L - 2e}
\]

H = height of retaining wall = 8 m
\(\gamma_r\) = unit weight of reinforced soil = 20 kN/m\(^3\)
L = length of geotextile in reinforced soil zone = 5.6 m
q = surcharge pressure = 18 kN/m\(^2\)

eccentricity (e) = \[
\frac{\text{Overturning moment}}{\text{Total vertical load}}
\]

\[e = \frac{M_o}{(W) + (q \times L)}\]

\(M_o\) = overturning moment = 620.80 kN-m/m

W = weight of reinforced soil behind the retaining wall
\[= 8 \times 20 \times 5.6 = 896\ \text{kN/m}\]
Since, eccentricity $e < L/6$, no tension will develop (Ok)

Actual bearing pressure = \[
\frac{(\gamma_r \times H \times L) + (q \times L)}{L - 2e}
\]

\[
= \frac{(20 \times 8 \times 5.6) + (18 \times 5.6)}{(5.6) - (2 \times 0.62)}
\]

\[
= \frac{996.8}{4.36} = 228.62 \text{ kN/m}^2
\]

Allowable bearing pressure = 700 kN/m2 (Given)
(F.S.)_{B.C.} = \frac{\text{Allowable bearing pressure}}{\text{Actual bearing pressure}}

(F.S.)_{B.C.} = \frac{700}{228.62} = 3.08 > 2 \text{ (OK)}
(B) Internal Stability

Step 1: Calculation of horizontal pressure (σ_{hf}) at any depth

Maximum horizontal earth pressure ($\sigma_{h,max}$) on the back of the retaining wall at any depth “h” due to surcharge load (q) and backfill (Meyerhof’s distribution),

$$\sigma_{h,max} = \frac{K_{ar} (\gamma_r h + q)}{K_{ab} (\gamma_b h + 3q) \left(\frac{h}{L}\right)^2 \left[1 - \frac{1}{3(\gamma_r h + q)}\right]}$$

$$K_{ar} = \frac{1 - \sin \phi_r}{1 + \sin \phi_r}$$

Prof. J. N. Mandal, Department of Civil Engineering, IIT Bombay
q = surcharge pressure = 18 kN/m²

\(K_{ar} = \) active earth pressure coefficient for the reinforced soil

\(\phi_r = \) internal friction angle of the reinforced soil = 34°

\(\gamma_b = \) unit weight of backfill soil = 18 kN/m³

\(K_{ab} = \) active earth pressure coefficient for backfill soil = 0.294

\(\gamma_r = \) unit weight of the reinforced soil = 20 kN/m³

\(L = \) length of the retaining wall = 5.6 m

\[
K_{ar} = \frac{1 - \sin \phi_r}{1 + \sin \phi_r}
\]

\[
K_{ar} = \frac{1 - \sin 34°}{1 + \sin 34°} = 0.28
\]
At any depth \((h)\), the actual horizontal earth pressure \((\sigma_{hf})\) at the facing,

\[
\sigma_{hf} = \sigma_{h,\text{max}} \times \text{R.F.}
\]

R.F. = Reduction factor = \[
1 - \frac{0.25(H - h)}{H}
\]

\(H = \text{height of retaining wall} = 8 \text{ m.}\)
Calculated $\sigma_{h,\text{max}}$ and σ_{hf} at different depths

<table>
<thead>
<tr>
<th>Depth h (m)</th>
<th>$\sigma_{h,\text{max}}$ kN/m2</th>
<th>RF</th>
<th>σ_{hf} kN/m2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>5.04</td>
<td>0.75</td>
<td>3.78</td>
</tr>
<tr>
<td>1</td>
<td>10.70</td>
<td>0.78</td>
<td>8.36</td>
</tr>
<tr>
<td>2</td>
<td>16.56</td>
<td>0.81</td>
<td>13.46</td>
</tr>
<tr>
<td>3</td>
<td>22.72</td>
<td>0.84</td>
<td>19.17</td>
</tr>
<tr>
<td>4</td>
<td>29.33</td>
<td>0.88</td>
<td>25.66</td>
</tr>
<tr>
<td>5</td>
<td>36.52</td>
<td>0.91</td>
<td>33.10</td>
</tr>
<tr>
<td>6</td>
<td>44.52</td>
<td>0.94</td>
<td>41.74</td>
</tr>
<tr>
<td>7</td>
<td>53.59</td>
<td>0.97</td>
<td>51.91</td>
</tr>
<tr>
<td>8</td>
<td>64.10</td>
<td>1.00</td>
<td>64.10</td>
</tr>
</tbody>
</table>
Variation of horizontal pressure with depth

Prof. J. N. Mandal, Department of Civil Engineering, IIT Bombay
Step 2: Calculation for vertical spacing

\[S_v = \text{Vertical spacing between geogrids} \]
Allowable tensile strength of geogrid (T_a) = 38 kN/m (Given)

However,

$$T_a = \frac{\sigma_{h,\text{max}} \times S_{v1}}{C_r}$$

$\sigma_{h,\text{max}}$ = Maximum horizontal pressure (kN/m²)

S_{v1} = Vertical spacing based on tension in geogrid (m)

C_r = Coverage ratio = 1

Therefore, $s_{v1} = \frac{38}{\sigma_{h,\text{max}}}$
Connecting pressure between geogrid and segmental block \((T_c) = 34 \text{ kN/m} \) (Given)

\[T_c = \frac{\sigma_{hf} \times S_{v2}}{C_r} \]

\(\sigma_{hf} = \text{actual horizontal pressure (kN/m}^2) \)

\(S_{v2} = \text{Vertical spacing based on tension in connection (m)} \)

\(C_r = \text{Coverage ratio} = 1 \)

Therefore, \(s_{v2} = 34/ \sigma_h \)

- Spacing = minimum \((s_{v1}, s_{v2}) \leq 1 \text{ m}\)
Calculation of spacing at different depths

<table>
<thead>
<tr>
<th>Depth, h (m)</th>
<th>$\sigma_{h,\text{max}}$ (kN/m²)</th>
<th>RF</th>
<th>σ_{hf} (kN/m²)</th>
<th>S_{v1} (m)</th>
<th>S_{v2} (m)</th>
<th>S_v (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>5.04</td>
<td>0.75</td>
<td>3.78</td>
<td>7.54</td>
<td>8.99</td>
<td>1.0</td>
</tr>
<tr>
<td>1</td>
<td>10.70</td>
<td>0.78</td>
<td>8.36</td>
<td>3.55</td>
<td>4.07</td>
<td>1.0</td>
</tr>
<tr>
<td>2</td>
<td>16.56</td>
<td>0.81</td>
<td>13.46</td>
<td>2.29</td>
<td>2.53</td>
<td>1.0</td>
</tr>
<tr>
<td>3</td>
<td>22.72</td>
<td>0.84</td>
<td>19.17</td>
<td>1.67</td>
<td>1.77</td>
<td>1.0</td>
</tr>
<tr>
<td>4</td>
<td>29.33</td>
<td>0.88</td>
<td>25.66</td>
<td>1.29</td>
<td>1.33</td>
<td>1.0</td>
</tr>
<tr>
<td>5</td>
<td>36.52</td>
<td>0.91</td>
<td>33.10</td>
<td>1.04</td>
<td>1.03</td>
<td>0.5</td>
</tr>
<tr>
<td>6</td>
<td>44.52</td>
<td>0.94</td>
<td>41.74</td>
<td>0.85</td>
<td>0.81</td>
<td>0.5</td>
</tr>
<tr>
<td>7</td>
<td>53.59</td>
<td>0.97</td>
<td>51.91</td>
<td>0.71</td>
<td>0.65</td>
<td>0.5</td>
</tr>
<tr>
<td>8</td>
<td>64.10</td>
<td>1.00</td>
<td>64.10</td>
<td>0.59</td>
<td>0.53</td>
<td>0.5</td>
</tr>
</tbody>
</table>

Prof. J. N. Mandal, Department of Civil Engineering, IIT Bombay
Variation of spacing with depth

Prof. J. N. Mandal, Department of Civil Engineering, IIT Bombay
Step 3: Calculation of anchorage length or embedded length
For embedded length,

\[s_v \times \sigma_h \times FS_{pullout} = 2 \times L_e \times C_i \times \sigma_v \tan \phi' \times C_r \]

\[\therefore L_e = \frac{s_v \times \sigma_h \times FS_{pullout}}{2 \times C_i \times \sigma_v \tan \phi' \times C_r} \]

\(S_v \) = spacing between geogrids
\(\sigma_h \) = Horizontal stress in kN/m\(^2\)
\(FS \) = factor of safety for pullout = 1.5
\(C_i \) = Interaction coefficient = 0.85
\(C_r \) = Coverage ratio = 1
\(\phi' = \phi_r \) = Internal friction angle of the reinforced soil = 34°
\(\sigma_v \) = vertical stress in kN/m\(^2\) = \(\gamma_r h \)
\(L_e \) = embedded length in m \(\geq 1 \) m
\[L_r = (H - z) \tan \left(45 - \frac{\phi}{2}\right) \]

\(L_r = \) Non acting Rankine length (m)

\(z = \) depth of layer from top

\[L = L_e + L_r \]

<table>
<thead>
<tr>
<th>No. of layers</th>
<th>depth (m)</th>
<th>Spacing (m)</th>
<th>(L_e) (m)</th>
<th>(L_{e,\text{min}}) (m)</th>
<th>(L_r) (m)</th>
<th>(L) (m)</th>
<th>(L_{\text{reqd}}) (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.75</td>
<td>1</td>
<td>0.330</td>
<td>1</td>
<td>3.855</td>
<td>4.855</td>
<td>5.6</td>
</tr>
<tr>
<td>2</td>
<td>1.75</td>
<td>1</td>
<td>0.313</td>
<td>1</td>
<td>3.323</td>
<td>4.323</td>
<td>5.6</td>
</tr>
<tr>
<td>3</td>
<td>2.75</td>
<td>1</td>
<td>0.320</td>
<td>1</td>
<td>2.791</td>
<td>3.791</td>
<td>5.6</td>
</tr>
<tr>
<td>4</td>
<td>3.75</td>
<td>1</td>
<td>0.334</td>
<td>1</td>
<td>2.260</td>
<td>3.260</td>
<td>5.6</td>
</tr>
<tr>
<td>5</td>
<td>4.75</td>
<td>1</td>
<td>0.353</td>
<td>1</td>
<td>1.728</td>
<td>2.728</td>
<td>5.6</td>
</tr>
<tr>
<td>6</td>
<td>5.75</td>
<td>0.5</td>
<td>0.188</td>
<td>1</td>
<td>1.196</td>
<td>2.196</td>
<td>5.6</td>
</tr>
<tr>
<td>7</td>
<td>6.25</td>
<td>0.5</td>
<td>0.218</td>
<td>1</td>
<td>0.930</td>
<td>1.930</td>
<td>5.6</td>
</tr>
<tr>
<td>8</td>
<td>6.75</td>
<td>0.5</td>
<td>0.252</td>
<td>1</td>
<td>0.665</td>
<td>1.665</td>
<td>5.6</td>
</tr>
<tr>
<td>9</td>
<td>7.25</td>
<td>0.5</td>
<td>0.289</td>
<td>1</td>
<td>0.399</td>
<td>1.399</td>
<td>5.6</td>
</tr>
</tbody>
</table>

Prof. J. N. Mandal, Department of Civil Engineering, IIT Bombay
Reinforcement details

- Also check for seismic loading conditions.

Prof. J. N. Mandal, Department of Civil Engineering, IIT Bombay
Example:

Calculate the horizontal stresses with depth on a wall of 8 m high under 200 kN tandem axle truck with eight wheels.

Calculate the horizontal stresses at 1m increment and plot the variation of maximum wheel load stress along the depth.
Geosynthetics Engineering: In Theory and Practice

Prof. J. N. Mandal, Department of Civil Engineering, IIT Bombay
(1) If \((m = X/ H) \leq 0.4\)
\[n = \frac{Z}{H} \]
\[
\sigma_H \left(\frac{H^2}{Q_p} \right) = \frac{0.28n^2}{(0.16 + n^2)^3}
\]

(2) If \(m > 0.4\)
\[
\sigma_H \left(\frac{H^2}{Q_p} \right) = \frac{1.77m^2n^2}{(m^2 + n^2)^3}
\]

\(Q_p\) = Point load of wheels,

\(\sigma_H' = \sigma_H \cos^2(1.1\theta)\)

Prof. J. N. Mandal, Department of Civil Engineering, IIT Bombay

Calculations:

(a) Stress due to wheels 1 and 2

<table>
<thead>
<tr>
<th>(Z (m))</th>
<th>(\frac{n}{Z/H})</th>
<th>(X (m))</th>
<th>(\frac{m}{X/H})</th>
<th>(\sigma_H \left(\frac{H^2}{Q_p} \right))</th>
<th>Wheel 1 (\sigma_H) (kPa)</th>
<th>Wheel 2 (\sigma'_H) (kPa)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0.125</td>
<td>0.00</td>
<td>0.00</td>
<td>0.000</td>
</tr>
<tr>
<td>1</td>
<td>0.125</td>
<td>1</td>
<td>0.125</td>
<td>0.81</td>
<td>0.32</td>
<td>0.079</td>
</tr>
<tr>
<td>2</td>
<td>0.25</td>
<td>1</td>
<td>0.125</td>
<td>1.59</td>
<td>0.62</td>
<td>0.155</td>
</tr>
<tr>
<td>3</td>
<td>0.375</td>
<td>1</td>
<td>0.125</td>
<td>1.45</td>
<td>0.57</td>
<td>0.142</td>
</tr>
<tr>
<td>4</td>
<td>0.5</td>
<td>1</td>
<td>0.125</td>
<td>1.02</td>
<td>0.40</td>
<td>0.099</td>
</tr>
<tr>
<td>5</td>
<td>0.625</td>
<td>1</td>
<td>0.125</td>
<td>0.66</td>
<td>0.26</td>
<td>0.064</td>
</tr>
<tr>
<td>6</td>
<td>0.75</td>
<td>1</td>
<td>0.125</td>
<td>0.42</td>
<td>0.16</td>
<td>0.041</td>
</tr>
<tr>
<td>7</td>
<td>0.875</td>
<td>1</td>
<td>0.125</td>
<td>0.27</td>
<td>0.11</td>
<td>0.026</td>
</tr>
<tr>
<td>8</td>
<td>1</td>
<td>1</td>
<td>0.125</td>
<td>0.18</td>
<td>0.07</td>
<td>0.018</td>
</tr>
</tbody>
</table>
Please let us hear from you

Any question?
THANKS FOR LISTENING