MODULE – 5
Machine Foundations
Design steps using Tschebotarioff’s “reduced natural frequency” method

1. Given
2. Assume the value of ω_n or f_n

 Depending on under tuned or over tuned case, assume ω_n

3. Size of machine base plate is determined (Minimum all-round clearance of 150 mm must be provided.) get A

4. Assume depth of the block foundation.

5. Find out the total weight $W = W_f + W_s$

Design steps using Tschebotarioff’s “reduced natural frequency” method (contd.)

6. Compute $q_0 = \frac{W}{A}$

7. Calculate $f_{nr} = f_n \sqrt{q_0}$

8. Use Tschebotarioff’s design chart. Find out A corresponding to calculated f_{nr}

9. Check A with previous calculation

 A required < A provided (Hence ok)

 * note: displacement criteria is not mentioned
Tschebotarioff’s Design Chart

\[f_n = \frac{1}{2\pi} \sqrt{\frac{KA}{m+m_s}} \]

where,
- \(K \) = dynamic modulus of subgrade reaction (lb/ft²)
- \(A \) = area of the base of the foundation (ft²)
- \(m \) = mass of the foundation block + machine
- \(m_s \) = mass of the soil

so,

\[f_n = \frac{1}{2\pi} \sqrt{\frac{A}{W}} \frac{1}{2\pi} \sqrt{\frac{K}{m+m_s}} = \frac{1}{2\pi} \sqrt{\frac{A}{W}} \frac{1}{2\pi} \sqrt{\frac{mg}{m+m_s}} = \frac{1}{2\pi} \sqrt{\frac{A}{W}} \frac{1}{2\pi} \sqrt{\frac{K}{1+\left(m_s/m\right)}} = \frac{1}{2\pi} \sqrt{\frac{A}{W}} \frac{1}{2\pi} \sqrt{\frac{K}{1+\left(m_s/m\right)}} \]

\[where, \; q_0 = \frac{W}{A} = contact \; pressure \]
Design of a Machine foundations as per Tschebotarioff’s “Reduced Natural Frequency”

Example Problem:

Design a block foundation for a machine of weight \(W_m = 0.5 \text{ ton} \) with minimum area of base plate as 45cm x 60cm. Operating frequency of the machine is \(f = 1500 \text{ rpm} \). Use Tschebotarioff’s reduced natural frequency method to obtain the size of the block foundation resting on 3 different soils, with the values of \(G \) as,

1. \(G = 50 \text{ kg/cm}^2 \) (\(= \text{tsf} \))
2. \(G = 100 \text{ kg/cm}^2 \)
3. \(G = 200 \text{ kg/cm}^2 \)

Take Poisson’s ratio for all soils = 0.25
Design of Machine Foundations as per IS:2974 (Part-1)-1969 (contd.)

Vibration criteria:

It is expected to have a foundation which is having natural frequency much higher or lower than the operating frequency of the machine.

UNDER TUNED → \(\frac{\omega}{\omega_n} \leq 0.5 \) for important machine

\(\leq 0.6 \) for less important machine

OVER TUNED → \(\frac{\omega}{\omega_n} \geq 2 \) for important machine

\(\geq 1.5 \) for less important machine