Reductive Elimination
\[\text{LnM} \xleftrightarrow{\text{RE}} \text{LnM}^+ \xrightarrow{\text{OA}} \text{LnM} \xrightarrow{\text{A}} \text{LnM}^+ \xrightarrow{\text{B}} \text{LnM} \]

A and B must be cis prior to RE for concentrated reaction.

RE accelerated by:
1. Reduction of electron density at M
2. Bulkier ligands.
Usually a concerted process

Retention of configuration

at A and B
RE can be accelerated by adding an appropriate ligand.

![Chemical structure diagram]

- **Slower**
- **Faster**
- **e⁻ withdrawing ligand**
More withdrawing ligands.

\[\text{Me}^2+ \longrightarrow \text{Me} \longrightarrow \text{Me-Me} + \text{PdL}_2 \]

\[
\begin{array}{c|c}
L & \text{Krel} \\
\hline
\text{PPh}_3 & 11 \\
\text{PPh}_2\text{Me} & 1 \\
\text{PF}_3 & \text{slower.} \\
\end{array}
\]

Less donor acc. = low; more donor acc. = high.