Chemical Reaction Engineering
Lecture 6: Complex Reactions

Jayant M. Modak
Department of Chemical Engineering
Indian Institute of Science, Bangalore
Topic 3: Complex systems

- Analysis of “Simple complex” systems
- Kinetics of complex systems
 - Chain reaction
 - Catalysis
 - Polymerization
- Lumping analysis
Complex systems - Examples

- Large number of reactions and reactants

Thermal cracking of alkanes

\[C_3H_8 \rightarrow C_3H_6 + H_2 \]

\[C_3H_8 \rightarrow C_2H_4 + CH_4 \]

\[C_3H_8 + C_2H_4 \rightarrow C_2H_6 + C_3H_6 \]

Cracking of crude to petrol

Metabolic network inside cell
Complex systems - Examples

- Chain reactions

 Thermal decomposition
 \[CH_3CHO \rightarrow CH_4 + CO \]

 Auto-oxidation
 \[R - H + O_2 \rightarrow ROOH \]

 Polymerization
 \[styrene \rightarrow poly(styrene) \]
Complex systems - Examples

➢ Catalytic reactions

Thermal decomposition

\[
C_{12}H_{22}O_{11} + H_2O \xrightarrow{\text{acid}} C_6H_{12}O_6 + C_6H_{12}O_6
\]

Ammonia synthesis

\[
\frac{1}{2}N_2 + \frac{3}{2}H_2 \xrightarrow{\text{Fe}} NH_3
\]
Yield – conversion diagram
Polymer weight distribution

Fig. 2. Comparison of experimental and calculated by the OCFE MWDs at different monomer conversions (MMA free-radical polymerization. Initiator concentration = 3×10^{-2} kg/kg of MMA; temperature = 70 °C) [23].
Catalytic reaction kinetics

![Graph showing the relationship between rate and pressure for different oxygen concentrations. The x-axis represents the pressure of ethylene, and the y-axis represents the rate. The graph includes data points for different oxygen pressures (0.061, 0.132, 0.263, 0.526, 0.789) depicted with various markers.](image-url)
Complex reactor behavior

Figure 10.4.1-4
Cracking of ethane to ethylene

New questions

- Are all products useful?
- How to monitor the reaction?
- Is conversion of ethane the only criteria for design?
Parallel reactions
Series reactions

\[A_1 \rightarrow A_2 \rightarrow A_3 \]
Complex (Series-parallel) reactions

\[A_2 + A_3 \rightarrow A_4 \]
Independent Reactions

\[A_1 \rightarrow A_2 \]
\[A_3 \rightarrow A_4 \]
Desired and Undesired Reactions

\[A_1 \rightarrow A_2 \]

\[A_1 \rightarrow A_3 \]

\[A_1 \rightarrow A_2 \rightarrow A_3 \]
Yield

Desired reaction \(A_1 \rightarrow A_2 \quad r_1 \)

Undesired reaction \(A_1 \rightarrow A_3 \quad r_2 \)

Overall Yield

\[
Y_2 = \frac{\text{Exit molar flowrate of desired product}}{\text{Inlet molar flowrate of reactant}}
\]
Selectivity

Desired reaction \[A_1 \rightarrow A_2 \quad r_1 \]

Undesired reaction \[A_1 \rightarrow A_3 \quad r_2 \]

Instantaneous Selectivity \[s_2 = \frac{r_1}{r_1 + r_2} \]

Overall Selectivity \[\tilde{S}_2 = \frac{\text{Exit molar flowrate of desired product}}{\text{Exit molar flowrate of all products}} \]
Selection of reactor type and conditions

Desired reaction \[A_1 \rightarrow A_2 \quad r_1 \]

Undesired reaction \[A_1 \rightarrow A_3 \quad r_2 \]

CSTR
\[
\frac{C_2}{C_{10} - C_1} = \frac{r_1}{r_1 + r_2}
\]

PFR
\[
\frac{C_2}{C_{10} - C_1} = \frac{1}{C_{10} - C_1} \int_{C_1}^{C_{10}} \frac{r_1}{r_1 + r_2} dC_1
\]
Complex systems - selectivity

\[C_{10} - C_1 \]

selectivity \((C_1)\)

\[q_2 - q_1 \]

- 1

0

1
Complex systems – series reactions

\[A_1 \rightarrow A_2 \quad r_1 = k_1 C_1 \]

\[A_2 \rightarrow A_3 \quad r_1 = k_2 C_2 \quad \alpha = k_2 / k_1 \]
Concept of yield-conversion diagram

\[A_1 \rightarrow A_2 \quad r_1 = k_1 C_1 \]
\[A_2 \rightarrow A_3 \quad r_1 = k_2 C_2 \quad \alpha = \frac{k_2}{k_1} \]
Concept of rate determining step

\[A_1 \rightarrow A_2 \quad r_1 = k_1 C_1 \]

\[A_2 \rightarrow A_3 \quad r_1 = k_2 C_2 \quad \alpha = \frac{k_2}{k_1} \]
Concept of rate determining step

\[A_1 \rightarrow A_2 \quad r_1 = k_1 C_1 \]

\[A_2 \rightarrow A_3 \quad r_1 = k_2 C_2 \quad \alpha = \frac{k_2}{k_1} \]
Concept of quasi-equilibrium approximation

\[A_1 \rightleftharpoons A_2 \quad r_1 = k_1 C_1 - k_{-1} C_2 \]
\[A_2 \rightleftharpoons A_3 \quad r_1 = k_2 C_2 - k_{-2} C_3 \]

\[k_1 = 1, \quad k_{-1} = 0.5, \quad k_2 = k_{-2} = 1 \]
Concept of quasi-equilibrium approximation

\[A_1 \rightleftharpoons A_2 \quad r_1 = k_1 C_1 - k_{-1} C_2 \]
\[A_2 \rightleftharpoons A_3 \quad r_1 = k_2 C_2 - k_{-2} C_3 \]

\[k_1 = 1, \quad k_{-1} = 0.5, \quad k_2 = k_{-2} = 10 \]
Concept of quasi-equilibrium approximation

\[A_1 \rightleftharpoons A_2 \quad r_1 = k_1 C_1 - k_{-1} C_2 \]
\[A_2 \rightleftharpoons A_3 \quad r_1 = k_2 C_2 - k_{-2} C_3 \]

\(k_1 = 1, \ k_{-1} = 0.5, \ k_2 = k_{-2} = 10 \)
Concept of quasi-steady state approximation

\[A_1 \rightarrow A_2 \quad r_1 = k_1 C_1 \]

\[A_2 \rightarrow A_3 \quad r_1 = k_2 C_2 \quad \alpha = \frac{k_2}{k_1} \]

![Graph showing concentration over time with alpha = 5]
Concept of quasi-steady state approximation

\[A_1 \rightarrow A_2 \quad r_1 = k_1 C_1 \]
\[A_2 \rightarrow A_3 \quad r_1 = k_2 C_2 \quad \alpha = \frac{k_2}{k_1} \]
Chemical Reaction Engineering
Lecture 6: Complex Reactions

Jayant M. Modak
Department of Chemical Engineering
Indian Institute of Science, Bangalore
Chain reactions

- Combustion reactions
- Decomposition reactions
- Autooxidation
- Polymerization
Chain reactions – decomposition of acetaldehyde

\[CH_3CHO \rightarrow CH_4 + CO \]

\[CH_3CHO \rightarrow CH_3^\cdot + CHO^\cdot \]

\[CH_3^\cdot + CH_3CHO \rightarrow CH_3CO^\cdot + CH_4 \]

\[CH_3CO^\cdot \rightarrow CH_3^\cdot + CO \]

\[2CH_3^\cdot \rightarrow C_2H_6 \]

\[r = kC_{CH_3CHO}^{3/2} \]
Polymerization

- Chain polymerization of $\text{CH}_2 = \text{CHX}$ (RX)
 - Ethylene (X=H), vinyl chloride (X=Cl)
 - Styrene (X=C$_6$H$_5$) etc

- Initiator 1 (Φ-Φ)

 Initiation
 $$C_6H_5COO - OOCC_6H_5 \rightarrow 2C_6H_5COO \bullet$$
 $$\Phi \bullet + RX \rightarrow \Phi - RX \bullet$$

 Propagation
 $$\Phi - RX \bullet + RX \rightarrow \Phi - (R) - RX \bullet$$
 $$\Phi - (R)_{j-1} - RX \bullet + RX \rightarrow$$
 $$\Phi - (R)_{j} - RX \bullet$$

 Termination
 $$\Phi - (R)_{j-1} - RX \bullet + \bullet XR - (R)_{i-1} - \Phi \rightarrow$$
 $$\Phi - (R)_{j-1} - RX - XR - (R)_{i-1} - \Phi$$
Polymerization

Initiation
\[I \xrightarrow{k_0} 2\Phi \quad \text{and} \quad k_0 = 10^{-4} - 10^{-6} \]
\[\Phi + M \xrightarrow{k_i} R_1 \]

Propagation
\[R_1 + M \xrightarrow{k_p} R_2 \quad k_p = 10^2 - 10^4 \]
\[R_{j-1} + M \xrightarrow{k_p} R_j \]

Termination
\[R_j + R_i \xrightarrow{k_a} P_{i+j} \quad k_a = 10^6 - 10^8 \]
Polymerization

<table>
<thead>
<tr>
<th>Species</th>
<th>Appearance</th>
<th>disappearance</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td></td>
<td>$k_0 I$</td>
</tr>
<tr>
<td>Φ</td>
<td>$r_0 = 2 f k_0 I$</td>
<td>$r_i = k_i \Phi M$</td>
</tr>
<tr>
<td>R_1</td>
<td>r_i</td>
<td>$k_p M R_1 + k_a R_1 \sum R_j$</td>
</tr>
<tr>
<td>R_j</td>
<td>$k_p M R_j$</td>
<td>$k_p M R_j + k_a R_j \sum R_i$</td>
</tr>
<tr>
<td>P_j</td>
<td>$\frac{k_a}{2} \sum R_{j-i} R_i$</td>
<td></td>
</tr>
</tbody>
</table>
Polymerization

Initiation rate \(r_i = 2 f k_0 I \)

Total radicals \(\Sigma R_j = \Gamma_0 = \left(\frac{r_i}{k_a} \right)^{1/2} \)

Monomer consumption \(r_M = k_p M \Gamma_0 \)

Radical concn \(R_j = \left(\frac{r_i}{k_p M} \right) \left(\frac{1}{1 + r_i / r_M} \right)^j \)

polymer generation \(r_p = R_j (j - 1) \frac{k_a}{2} \left(\frac{r_i}{k_p M} \right) \)
Polymerization

- Time (min):
 - 360
 - 180
 - 60

- Initiator:
 - 0.04
 - 0.02
 - 0.08
Polymer weight distribution

Fig. 2. Comparison of experimental and calculated by the OCFE MWDs at different monomer conversions (MMA free-radical polymerization. Initiator concentration = 3×10^{-2} kg/kg of MMA; temperature = 70 °C) [23].
Chemical Reaction Engineering
Catalytic reactions

Jayant M. Modak
Department of Chemical Engineering
Indian Institute of Science, Bangalore
Catalytic reactions

Heterogeneous catalysis

- Gas
- Solid
- Liquid
- (2nd Liquid) Catalyst
Catalytic reactions

Example: Hydrogen peroxide decomposition

\[2\text{H}_2\text{O}_2 \rightarrow 2\text{H}_2\text{O} + \text{O}_2 \]

- \(\text{H}_2\text{O}_2 \) solution at 25°C stable over months
- Uncontrolled, thermal decomposition at >320°C in seconds
- Controlled, catalytic or enzymatic decomposition at 25°C in seconds
Catalytic reactions

Efficiency of Phthalic Acid Anhydride Production

Non-catalytic Oxidation of naphthalene in fluid phase with MnO₂+HCl (1872), Chromic acid (1881), Oleum (1891)

Yield: 5-15%

Catalytic Oxidation of o-Xylene in the gas phase on V₂O₅-catalyst

Yield: 75-87%
Catalytic reactions

Efficiency of nitrogen fixation

- Nitric Acid by Electric Arc (Birkeland & Eyde)
- Calcium Cyanide (Frank & Caro)
- Ammonia from coke (Haber & Bosch)
- Ammonia from electrolysis of water
- Ammonia from natural gas
- Partial oxidation
- Steam reforming

catalytic processes
Catalytic reactions

Product spectrum from partial oxidation of propene

Substrates: propene + oxygen

<table>
<thead>
<tr>
<th>Catalysts</th>
<th>Products</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bi, Mo, P</td>
<td>acrolein, CH₂=CH-CHO</td>
</tr>
<tr>
<td>Mo, V, Fe</td>
<td>acrylic acid, CH₂=CH-COOH</td>
</tr>
<tr>
<td>Sn, Mo</td>
<td>acetone, CH₃-C-CH₂-CH₂</td>
</tr>
<tr>
<td>Ti, W</td>
<td>propylene oxide, CH₃-O-CH₂-CH₂</td>
</tr>
<tr>
<td>Ti, V</td>
<td>acetic acid, CH₃-COOH</td>
</tr>
<tr>
<td>Zn, Mo</td>
<td>1,5-hexadiene, CH₂=CH-CH₂-CH₂-CH=CH₂</td>
</tr>
<tr>
<td>Bi, Sb</td>
<td>benzene, C-CH₃-CH₂-CH₂-CH₂-CH₂</td>
</tr>
</tbody>
</table>

Propene + oxygen: CH₃-CH=CH₂ + O₂
Catalytic reactions

Steps during the course of the reaction
① External diffusion
② Internal diffusion
③ Adsorption on the active sites
④ Surface reaction
⑤ forming the products
⑥ Desorption of the products
⑦ Internal diffusion
External diffusion

reaction: substrate A → product P
Lumping analysis

\[A_{10} = 1, \ A_{20} = 0, \ A_{30} = 0 \]

\[A_{10} = 0.5, \ A_{20} = 0.5, \ A_{30} = 0 \]
Lumping analysis

\[\hat{A}_1 = A_1 + A_3, \quad \hat{A}_2 = A_2 \]

Initial \(A_1, A_2, A_3 \)
- 1,0,0
- 0,0,1

Concentration vs. Time graph