Computational Techniques Module 6: Differentiation and Integration

Dr. Niket Kaisare

Department of Chemical Engineering

Indian Institute of Technology - Madras

• Given a function y = f(x) or data (x_i, y_i) Obtain: dy/dx

Differentiation:

Obtain slope of tangent to the curve at any point x

• Given a function y = f(x) or data (x_i, y_i) Obtain: dy/dx

Differentiation:

$$\frac{dy}{dx} = \lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x} \approx \frac{y_{i+1} - y_i}{x_{i+1} - x_i}$$

Integration: General Setup

• Given a function y = f(x) or data (x_i, y_i)

Obtain:
$$\int_{a}^{b} f(x)dx$$

Integration:

Obtain area under the curve between two points *a* and *b*

Integration: General Setup (2)

• Given a function y = f(x) or data (x_i, y_i)

Obtain:
$$\int_{a}^{b} f(x)dx$$

Integration:

Obtain area under the curve between two points *a* and *b*

Applications of Differentiation

Numerical Differentiation in Newton Raphson

$$x^{(i+1)} = x^{(i)} - \frac{f(x^{(i)})}{f'(x^{(i)})}$$

If derivative f'(x) is not available

$$x^{(i+1)} = x^{(i)} - \frac{\delta \cdot f(x^{(i)})}{f(x^{(i)} + \delta) - f(x^{(i)})}$$

Applications of Differentiation

Numerical Differentiation in Newton Raphson

$$x^{(i+1)} = x^{(i)} - \frac{f(x^{(i)})}{f'(x^{(i)})}$$

If derivative f'(x) is not available

$$x^{(i+1)} = x^{(i)} - \frac{\delta \cdot f(x^{(i)})}{f(x^{(i)} + \delta) - f(x^{(i)})}$$

Sensitivity Analysis (RDS in multiple reactions)

$$A \xrightarrow{k_1} B \xrightarrow{k_2} C \xrightarrow{k_3} D \qquad s_i = \left(\frac{1}{X}\right) \frac{\partial X}{\partial k_i}$$

Applications of Integration

• To calculate mean
$$\frac{1}{b-a} \int_{a}^{b} f(x) dx$$

• Mass flux calculation $\iint_{\Lambda} (\rho u.w_k) dxdy$

$$\iint_{A} (\rho u.w_k) dx dy$$

• Net heat flux or heat loss $\int flux \, ds$

$$\overrightarrow{n}Q$$

$$flux = Q.n$$

Applications of Integration (2)

Design equation of a Plug Flow Reactor

$$V = F_{A0} \int_{0}^{X} \frac{dX}{-r_{A}}$$

Overview

- Numerical Differentiation
 - Forward and Backward Difference
 - Central Difference
 - Multi-Point methods
 - Error analysis
- Numerical Integration
 - Trapezoidal rule
 - Simpson's rules
 - Richardson's extrapolation
 - Gauss Quadrature

Computational Techniques Module 6: Differentiation and Integration Summary of Numerical Schemes

Dr. Niket Kaisare

Department of Chemical Engineering

Indian Institute of Technology - Madras

• Given a function y = f(x) or data (x_i, y_i) Obtain: dy/dx

Differentiation:

Obtain slope of tangent to the curve at any point x

• Given a function y = f(x) or data (x_i, y_i) Obtain: dy/dx

Differentiation:

(Forward Difference)

$$\frac{dy}{dx} = \lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x} \approx \frac{y_{i+1} - y_i}{x_{i+1} - x_i}$$

• Given a function y = f(x) or data (x_i, y_i) Obtain: dy/dx

Differentiation:

(Central Difference)

$$\frac{dy}{dx} = \lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x} \approx \frac{y_{i+1} - y_{i-1}}{x_{i+1} - x_{i-1}}$$

Summary for Numerical f'(x)

Method of characteristics: Using Taylor's Series

$$f(x_{i+1}) = f(x_i) + hf'(x_i) + \frac{h^2}{2!}f''(x_i) + \frac{h^3}{3!}f'''(x_i) + \cdots$$

etc.

• The differential of interest is written as:

$$\frac{df}{dx} = a_1 f(x_{i-1}) + a_2 f(x_i) + a_3 f(x_{i+1})$$

• Substitute and find values of a_1 a_2 and a_3 .

Summary for Numerical f'(x)

Туре	Differential	Error	
Forward	$\frac{f(x_{i+1}) - f(x_i)}{h}$	O(h)	
Backward	$\frac{f(x_i) - f(x_{i-1})}{h}$	O(h)	
Central	$\frac{f(x_{i+1}) - f(x_{i-1})}{2h}$	$O(h^2)$	
3-pt Forward	$\frac{-f(x_{i+2}) + 4f(x_{i+1}) - 3f(x_i)}{2h}$	$O(h^2)$	

This is the _____ truncation error

Higher Derivatives

Second derivative (central difference)

$$f''(x_i) = \frac{f(x_{i+1}) - 2f(x_i) + f(x_{i-1})}{h^2} + O(h^2)$$

Second derivative (forward difference)

$$f''(x_i) = \frac{f(x_{i+2}) - 2f(x_{i+1}) + f(x_i)}{h^2} + O(h)$$

Third derivative (central difference)

$$f'''(x_i) = \frac{f(x_{i+2}) - 2f(x_{i+1}) + 2f(x_{i-1}) - f(x_{i-2})}{h^2} + O(h^2)$$

Round-off and Truncation Errors

Step-size for Fwd Diff $h \propto \left[\varepsilon_{\text{machine}}\right]^{\frac{1}{2}}$ minimum error Central $h \propto \left[\varepsilon_{\text{machine}}\right]^{\frac{1}{2}}$

Integration: General Setup

• Given a function y = f(x) or data (x_i, y_i)

Obtain:
$$\int_{a}^{b} f(x)dx$$

Integration:

Obtain area under the curve between two points *a* and *b*

Numerical Integration

• Given a function y = f(x) or data (x_i, y_i)

Obtain:
$$\int_{a}^{b} f(x)dx$$

Integration:

Split the region into various intervals and add the areas for each

Integration Formulae

	Formula	Error
Trapezoidal	$\frac{h}{2}(y_1 + y_2)$	$O(h^3)$
Simpsons 1/3 rd	$\frac{h}{3}(y_1+4y_2+y_3)$	$O(h^5)$
Simpsons 3/8 th	$\frac{3h}{8}(y_1 + 3y_2 + 3y_3 + y_4)$	$O(h^5)$
Richardson's	$\frac{2^n I(h_2) - I(h_1)}{2^n - 1}$	$O(h^{\overline{n}+1})$
Quadrature	"Open-type" method	

Integration: PFR Example

Design Equation
$$V = F_{A0} \int_{0}^{X} \frac{dX}{-r(X)}$$

Trapezoidal Rule: Single Application

Trapezoidal Rule: Two Applications

1/3rd Rule: One Application

3/8th Rule: One Application

Results (comparison)

Step Size (h)		0.15	0.075	0.015	0.0075
Trapezoidal	Volume	6.9271	6.4220	6.2345	6.2283
	# application	6	12	60	120
I/3 rd Rule	Volume	6.4167	6.2536	6.2263	6.2262
	# application	3	6	30	60
3/8 th Rule	Volume	6.4989	6.2711	6.2264	6.2262
	# application	2	4	20	40

Gauss Quadrature

The integral is approximated as

$$\int_{-1}^{1} f(x)dx \approx \sum_{i \in [-1,1]} a_i f(x_i)$$

n	formula
2	$f\left(-\frac{1}{\sqrt{3}}\right) + f\left(\frac{1}{\sqrt{3}}\right)$
3	$\frac{5}{9}f\left(-\sqrt{\frac{3}{5}}\right) + \frac{8}{9}f\left(0\right) + \frac{5}{9}f\left(\sqrt{\frac{3}{5}}\right)$
and so on	

General Guidelines

- Numerical differentiation
 - Prefer central differences in general
 - Choose appropriate step size h
- Numerical integration
 - Prefer Simpson's 1/3rd rule due to accuracy
 - Multiple applications to improve accuracy
 - Richardson's extrapolation is effective, but requires more computation