

Dr. Niket Kaisare

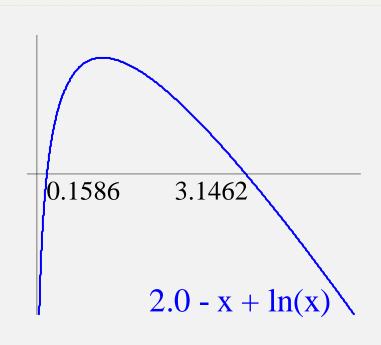
Department of Chemical Engineering

Indian Institute of Technology - Madras

A Simple Example

To solve the following equation:

$$2.0 - x + \ln(x) = 0$$



The solution is the location where the curve intersects the X-axis

It is possible to have multiple solutions (finite) to the problem

General Setup

 Let x be a variable of interest. The objective is to find the value of x which satisfies the following nonlinear equation

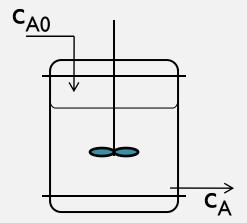
$$f(x) = 0$$

General Setup

 Let x be a variable of interest. The objective is to find the value of x which satisfies the following nonlinear equation

$$f(x) = 0$$

Example: Catalytic reaction in a CSTR with L-H Kinetics



$$\underbrace{\frac{C_{A0}}{\tau} - \frac{C_A}{\tau} - \frac{kC_A}{(1 + KC_A)^2}}_{f(C_A)} = 0$$

Extension to Multi-Variables

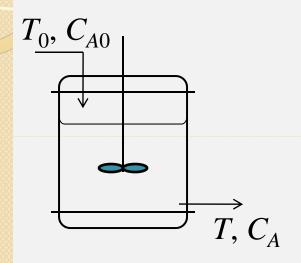
• Let $x_1, x_2, ..., x_n$ be n variables, which are described by the following coupled equations:

$$f_1(x_1, x_2, \dots, x_n) = 0$$

 $f_2(x_1, x_2, \dots, x_n) = 0$
:
:
 $f_n(x_1, x_2, \dots, x_n) = 0$

$$\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} \qquad \mathbf{f}(\mathbf{x}) = \begin{bmatrix} f_1(\mathbf{x}) \\ f_2(\mathbf{x}) \\ \vdots \\ f_n(\mathbf{x}) \end{bmatrix} \qquad \qquad \mathbf{f}(\mathbf{x}) = \mathbf{0}$$

Example: Adiabatic CSTR



$$\frac{C_{A0}}{\tau} - \frac{C_A}{\tau} - k_0 e^{\left(-\frac{E}{RT}\right)} C_A^{1.65} = 0$$

$$f_1(C_A, T)$$

$$\frac{T_0}{\tau} - \frac{T}{\tau} + \frac{-\Delta H}{\rho c_p} \left[k_0 e^{\left(-\frac{E}{RT}\right)} C_A^{1.65} \right] = 0$$

$$f_2(C_A, T)$$

Outline of Non-Linear Equation

- Bracketing Methods
 - Bisection method
 - Regula Falsi
- Open Methods
 - Secant method
 - Fixed-point iteration
 - Newton-Raphson
- Modifications and Extensions
- Root-Finding

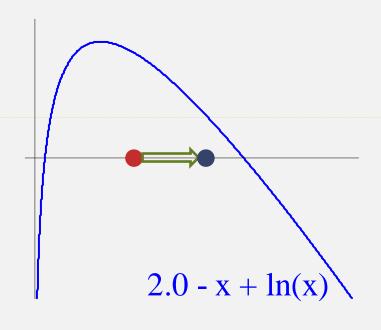
Computational Techniques Summary of Module 4

Dr. Niket Kaisare

Department of Chemical Engineering

Indian Institute of Technology - Madras

General Strategy of Solution



Start with initial guess(es)

Using a chosen strategy, move in the direction of the solution

Verify if stopping criterion is satisfied

Solution!

Summary (I of 2)

Method	# initial guesses	$x^{(i+1)} =$	Order Conv.
Bisection	$ \begin{vmatrix} 2; \\ f^{(l)} \cdot f^{(r)} < 0 \end{vmatrix} $	$\frac{x^{(l)} + x^{(r)}}{2}$	I
Regula Falsi	$ \begin{array}{ c c } \textbf{2;} \\ f^{(l)} \cdot f^{(r)} < 0 \end{array} $	$x^{(l)} - f^{(l)} \frac{x^{(l)} - x^{(r)}}{f^{(l)} - f^{(r)}}$	I to 2
Fixed Point Iteration	1	$g(x^{(i)})$	I
Secant	2	$x^{(i)} - f^{(i)} \frac{x^{(i)} - x^{(i-1)}}{f^{(i)} - f^{(i-1)}}$	I to 2
Newton- Raphson		$x^{(i)} - \frac{f(x^{(i)})}{f'(x^{(i)})}$	2

Summary (2 of 2)

	Method	Stability	Issues / Important Considerations	Multi- Variable
	Bisection	Guaranteed	Single variable only. $f(x)$ change sign at \overline{x}	No
	Regula Falsi	Guaranteed	do	No
	Fixed Point Iteration	Not guaranteed	Limited applicability due to stability.	Yes (easy)
	Secant	Not guaranteed	Versatile and fast.	Yes (moderate)
	Newton- Raphson	Not guaranteed	Most popular & fast. $x^{(1)}$ be not far from \overline{x} $f'(x^{(i)}) \neq 0$	Yes (moderate)

Multi-Variable Examples: Fixed Point Iteration

Extension is straightforward

For all
$$j=1$$
 to n ,
$$x_j^{(i+1)} = f_j\left(x_1^{(i)}, x_2^{(i)}, \dots, x_n^{(i)}\right)$$

$$\mathbf{x}^{(i+1)} = \mathbf{f}\left(\mathbf{x}^{(i)}\right)$$

Sufficient condition for convergence

$$\left| \frac{\partial f_j}{\partial x_1} \right| + \left| \frac{\partial f_j}{\partial x_2} \right| + \dots + \left| \frac{\partial f_j}{\partial x_n} \right| \le 1$$

Multi-Variable Examples: Newton-Raphson

$$\mathbf{x}^{(i+1)} = \mathbf{x}^{(i)} - \mathbf{J}^{-1}.\mathbf{f}(\mathbf{x}^{(i)})$$

$$\mathbf{J} = \nabla \mathbf{f} = \begin{bmatrix} \frac{\partial f_1}{\partial x_1} & \frac{\partial f_1}{\partial x_2} & \cdots & \frac{\partial f_1}{\partial x_n} \\ \frac{\partial f_2}{\partial x_1} & \frac{\partial f_2}{\partial x_2} & \cdots & \frac{\partial f_2}{\partial x_n} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial f_n}{\partial x_1} & \frac{\partial f_n}{\partial x_2} & \cdots & \frac{\partial f_n}{\partial x_n} \end{bmatrix}_{\mathbf{X}^{(i)}}$$

Quadratic Rate of Convergence

Improvements developed for speed and performance

Newton-Raphson Ralston's modifications for multiple roots

If there are m roots:

$$x^{(i+1)} = x^{(i)} - m \frac{f(x^{(i)})}{f'(x^{(i)})}$$

Improved Newton-Raphson

Roots of f(x) are the same as: $h(x) = \frac{f(x)}{f'(x)}$

$$x^{(i+1)} = x^{(i)} - \frac{f(x^{(i)})f'(x^{(i)})}{f'(x^{(i)})f'(x^{(i)}) - f(x^{(i)})f''(x^{(i)})}$$

Newton-Raphson Modifications to improve stability

"Line-Search":

$$\mathbf{x}^{(i+1)} = \mathbf{x}^{(i)} - \omega.\mathbf{J}^{-1}\mathbf{f}(\mathbf{x}^{(i)})$$

 $0 < \omega \le 1$ is like under-relaxation parameter

Levenberg-Marquardt modification

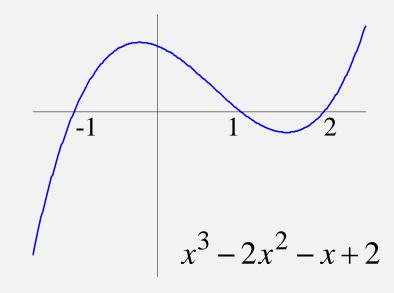
Motivation: Root of f(x) is a minimum of $[f(x)]^2$

$$\mathbf{x}^{(i+1)} = \mathbf{x}^{(i)} - \left[\mathbf{J}^T \mathbf{J} + \beta \mathbf{I} \right]^{-1} \mathbf{J}^T \mathbf{f} \left(\mathbf{x}^{(i)} \right)$$

Root Finding

Aim is to find all roots of a polynomial

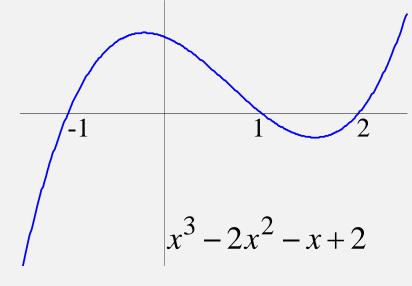
• i.e., all solutions to f(x) = 0where f is a polynomial function



Root Finding

Bairstow's method

$$a_0 + a_1 x + a_2 x^2 + \dots + a_n x^n$$



$$\underbrace{\left[b_{0} + b_{1}x + b_{2}x^{2} + \dots + b_{n-2}x^{n-2}\right]}_{P_{n-2}} \underbrace{\left[x^{2} + px + q\right]}_{Q} + \underbrace{\left[c_{1}x + c_{0}\right]}_{R}$$

$$P_n = QP_{n-2} + R$$

Q is a factor of P_n if R=0

Additional Reading

- Gupta S.K. (1995), Numerical Methods for Engineers, New Age International
- Chapra S.C. and Canale R.P. (2006), Numerical Methods for Engineers, 5th Ed., McGraw Hill
- Press W.H., Teukolsky S.A., et al. (2007),
 Numerical Recipes: The Art of Scientific Computing,
 Cambridge University Press, 3rd Edition.
- Online version at the Numerical Recipes website: http://www.nr.com/