Advanced Numerical Analysis for Chemical Engineering
Final Examination - 1 (3 hrs.)

Instruction: Closed book and closed notes examination.

1. (a) State True or False. Justify your answer.
 1. There exists a 4×4 matrix whose row space contains $[1 \ 2 \ 1 \ 1]^T$ and whose null space contains $[1 \ -2 \ 1 \ 1]^T$. (2 marks)
 2. The rank of a $n \times n$ matrix with every $a_{ij} = c$ where c is a constant is one. (2 marks)

(b) Consider matrix

$$B = \begin{bmatrix}
1 & 2 & -1 \\
-1 & -2 & 1 \\
1 & 2 & -1
\end{bmatrix}$$

1. What is rank of matrix B? Find a basis for the left null space of matrix B (i.e. null space of B^T). (4 marks)
2. Find projection of vector $b = [1 \ 1 \ 1]^T$ into the row space of matrix B. (4 marks)

(c) Consider an $n \times n$ positive symmetric definite matrix A. Matrix A can be expressed as

$$A = \Psi \Lambda \Psi^T$$

where Ψ is the matrix containing orthonormal eigen vectors of A and Λ is a diagonal matrix with eigen values of A appearing on it’s diagonal. Show that the condition number of matrix Ψ is 1, i.e. $C(\Psi) = 1$. (4 marks)

(d) Prove the following inequalities

$$\|AB\| \leq \|A\| \|B\|$$

$$C(AB) \leq C(A)C(B)$$

for arbitrary matrices A and B where $C(.,.)$ represents the condition number. (4 marks)

2. Optimization and parameter estimation

(a) An objective function (cost) for design of a 50 stage distillation column is given as

$$\phi(P, R) = 14720(100 - P) + 6560R - 30PR - 6560 = 30P$$

Using the necessary conditions for optimality, find optimum values of reflux ratio (R) and % recovery in bottom stream (P) that minimize the cost $\phi(P, R)$. (4 marks)

(b) Table (1) presents data for distribution of SO_3 in Hexane. It is desired to fit following model to data

$$y = \alpha P^\beta$$

Calculate least square estimates of model parameters (α, β) by suitably transforming the model and using linear least square method. (5 marks)
<table>
<thead>
<tr>
<th>Run No.</th>
<th>(P) pressure (psia)</th>
<th>(y) (wt.fr.of Hexane)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>200</td>
<td>0.85</td>
</tr>
<tr>
<td>2</td>
<td>400</td>
<td>0.57</td>
</tr>
<tr>
<td>3</td>
<td>600</td>
<td>0.40</td>
</tr>
<tr>
<td>4</td>
<td>1200</td>
<td>0.21</td>
</tr>
<tr>
<td>5</td>
<td>1600</td>
<td>0.08</td>
</tr>
</tbody>
</table>

Table 1: Reaction Rate Data

(c) Suppose it is desired to estimate the model parameters using the Gauss-Newton method. Perform one iteration of Gauss-Newton step using estimates of \((\alpha, \beta)\) generated in part (a). (5 marks)

3. ODE-IVP and ODE-BVP

(a) Progress of a chemical reaction in a batch reactor is described by the following set of ODE-IVP

\[
\frac{dx}{dt} = Ax \quad ; \quad x(0) = \begin{bmatrix} 1 & 1 \end{bmatrix}^T
\]

where \(x(t) \) represents vector of reactor concentrations.

1. Find solution \(x(t) = \exp(At)x(0) \) using eigen values and eigen vectors of \(A \). (3 marks)
2. Comment upon qualitative behavior of solutions based on eigen values of matrix \(A \). (2 marks)

(b) The steady state behavior of an isothermal tubular reactor with axial mixing, in which a first order irreversible reaction is carried out, is represented by following ODE-BVP

\[
\frac{d^2C}{dz^2} - \frac{dC}{dz} - 6C = 0
\]

At \(z = 0 : \frac{dC}{dz} = C(0) - 1 \); At \(z = 1 : \frac{dC}{dz} = 0 \)

It is desired to solve this problem using the method of orthogonal collocations.

1. For the choice of internal collocation points at \(z = 0.2 \) and \(z = 0.8 \), write down the appropriate algebraic equations to be solved in terms of unknowns. The \(S \) and \(T \) matrices for the given choice of roots are listed below. (4 marks).

\[
S = \begin{bmatrix}
-7 & 8.2 & -2.2 & 1 \\
-2.7 & 1.7 & 1.7 & -0.7 \\
0.7 & -1.7 & -1.7 & 2.7 \\
-1 & 2.2 & -8.2 & 7
\end{bmatrix} \quad ; \quad T = \begin{bmatrix}
24 & -37.2 & 25.2 & -12 \\
16.4 & -24 & 12 & -4.4 \\
-4.4 & 12 & -24 & 16.4 \\
-12 & 25.2 & -37.2 & 24
\end{bmatrix}
\]
2. Rearrange the equations derived in above the standard form \(Ax = b \) where

\[
\begin{bmatrix}
 x_0 & C_1 & C_2 & C_2
\end{bmatrix}^T
\]

\(C_0 \equiv C(0), \quad C_1 \equiv C(0.2), \quad C_2 \equiv C(0.8), \quad C_3 \equiv C(1) \)

Is matrix \(A \) diagonally dominant? Suppose it is desired to solve \(Ax = b \) using Gauss-Seidel method. Can you arrive at any conclusion regarding the convergence of Gauss-Seidel method only based on the diagonal dominance of \(A \)? (3 marks)

(c) It is desired to solve the following scalar ODE-IVP

\[
\frac{dx}{dt} = f(x, t) \quad ; \quad x(t_n) = x(n)
\]

using following multi-step algorithm.

\[
x(n + 1) = \alpha_0 x(n) + \alpha_1 x(n - 1) + h [\beta_0 f(n) + \beta_{-1} f(n + 1)]
\]

using local polynomial approximation of the form

\[
x^{(\alpha)}(t) = a_{0,n} + a_{1,n}t + a_{2,n}t^2 + a_{3,n}t^3
\]

Find the coefficients \((\alpha_0, \alpha_1, \beta_0, \beta_{-1})\) and state the final form of the integration algorithm. (4 marks)

Note: The exactness constraints are given as

\[
\sum_{i=0}^{p} \alpha_i = 1; \quad (j = 0)
\]

\[
\sum_{i=0}^{p} (-i)^j \alpha_i + j \sum_{i=-1}^{p} (-i)^{j-1} \beta_i = 1; \quad (j = 1, 2, \ldots, m)
\]

Note: \((i)^j = 1\) when \(i = j = 0\)