1. Consider an ARMA process

\[v(k) = \alpha v(k - 1) + e(k) + \beta e(k - 1) \] \hspace{1cm} (1)

where \(\{e(k)\} \) is a zero mean white noise process with variance \(\lambda^2 \). It can be shown that stochastic process \(\{v(k)\} \) has zero mean.

(a) Derive expressions for cross-covariance \(r_{ve}(1) = E[v(k)e(k - 1)] \) \hspace{1cm} (2 marks)

(b) Derive expressions for auto-covariance \(r_v(1) = E[v(k)v(k - 1)] \). \hspace{1cm} (4 marks)

2. Consider Box-Jenkin’s model

\[y(k) = q^{-1} + 0.5q^{-2} u(k) + \frac{1 + 0.5q^{-1}}{(1 - 0.8q^{-1})} e(k) \]

Derive one step prediction

\[\hat{y}(k|k - 1) = [H(q)]^{-1} G(q) u(k) + [1 - (H(q))^{-1}] y(k) \]

\[y(k) = \hat{y}(k|k - 1) + e(k) \]

and express dynamics of \(\hat{y}(k|k - 1) \) as a time domain difference equation. \hspace{1cm} (6 marks)

3. Consider a coupled tank system in which dynamics of levels in the two tanks is governed by

\[\frac{dx}{dt} = \begin{bmatrix} -3 & 2 \\ 0 & -1 \end{bmatrix} x + \begin{bmatrix} -1 \\ 1 \end{bmatrix} u \]

where \(x \) denotes perturbations in level and \(u \) denotes perturbations in inlet flow.

(a) It is desired to control this system (at the setpoint equal to the origin) using a feedback control law of the form

\[u = - \begin{bmatrix} \alpha & \beta \end{bmatrix} x \]

Determine the state space model (differential equation) that governs the closed loop dynamics in terms of unknowns \(\alpha, \beta \). \hspace{1cm} (2 marks)

(b) Determine, if it exists, controller gains \(\begin{bmatrix} \alpha & \beta \end{bmatrix} \) such that the state transition matrix for the closed loop system has eigenvalues at the roots of the following quadratic equation \hspace{1cm} (4 marks)

\[\lambda^2 + 11\lambda + 30 = 0 \]
4. Consider a **continuous time** linear perturbation model

\[\frac{dx}{dt} = Ax + Bu \]

\[
A = \begin{bmatrix}
-2 & 1/2 & 1/2 \\
1 & -3/2 & -1/2 \\
1 & 1/2 & -5/2
\end{bmatrix}
\quad \text{and} \quad
B = \begin{bmatrix}
-1 & 1 \\
0 & 1 \\
2 & -1
\end{bmatrix}
\]

Eigenvalues of matrix \(A \) are -1, -2 and -3 and the continuous time system is asymptotically stable. Suppose discretization of the continuous time system is carried out using the Euler’s method i.e. \([\Phi]_{Euler} = I + TA \). Then, find the range of sampling time \(T \) for which the discrete time model will retain the stability characteristics of the continuous time system. (7 marks)

Hint: If matrix \(A \) is diagonalizable, can you relate eigenvalues of \(A \) with eigenvalues of \([\Phi]_{Euler} \)?