Proteomics Course

LECTURE-22
Liquid chromatography-Mass spectrometry (LC-MS/MS)

Dr. Sanjeeva Srivastava
IIT Bombay

Lecture outline

• Mass spectrometry work-flow
• Liquid chromatography
• In-gel digestion
• Ionization source
• Mass analyzers
• Tandem mass spectrometry
(1) In-gel digestion
In-gel digestion:

\textbf{Animation}
(2) Separation technology – Liquid chromatography (LC)

Liquid chromatography (LC)

- Separate mixture components on basis of differences in affinity for stationary & mobile phase
- Removes undesired impurities
- Increased sensitivity, detection of low level proteins
- Separates peptide mixture
Reversed phase (RP) chromatography

- Based upon hydrophobic binding interaction between
 - peptides/proteins (mobile phase)
 - immobilized hydrophobic ligand (stationary phase)

RP-HPLC configuration

Mobile phases

A buffer (0.1% Formic acid, 5% ACN)
B buffer (0.1% Formic acid, 80% ACN)

A buffer (0.1% Formic acid, 5% ACN)
B buffer (0.1% Formic acid, 80% ACN)
RP-HPLC with ESI

- RP is used with ESI
 - due to compatibility of RP’s acidic aqueous & polar mobile with ESI
- In-line RP-HPLC is useful
 - desalting peptides before ESI
 - no need for off-line desalting

Strong cation exchange (SCX) resin

- Silica based cation exchange stationary phase
- Sulfonic acid cation-based exchange ligand
- Ligand covalently bound to polymer coated silica
Microcapillary HPLC columns

- Microcapillary HPLC’s low flow rate is more sensitive than standard RP-HPLC
- Microcapillary HPLC columns prepared using fused silica capillary

Multidimensional separations

- Multidimensional separations
 - Size exclusion chromatography (SEC)
 - Ion exchange chromatography (IEX)
 - Capillary electrophoresis (CE)
 - Reversed-phase (RP)
 - Affinity chromatography
Multidimensional approaches coupled with MS

I. SEC \rightarrow RP

II. RP \rightarrow CE
 SEC \rightarrow CE

III. IMAC \rightarrow RP
 Avidin \rightarrow RP

IV. SCX \rightarrow RP

MUltimensional Protein Identification Technology (MudPIT)

SCX – separation by charge

RP (C18) – separation by hydrophobicity
Liquid chromatography:
Animation

(3) Ionization sources
Ionization sources

Gas phase
- Electron ionization
- Chemical ionization (CI)
- Photoionization (PI)

Solution Phase
- Electrospray
- Atmospheric-pressure PI
- Atmospheric-pressure CI

Solid Phase
- Matrix-assisted laser desorption
- Plasma desorption
- Fast Atom Bombardment

Electrospray ionization (ESI)

- ESI requires sample of interest to be in solution
- To ionize samples high voltage is applied to high conductively coated needle
- Distinguishing feature of ESI
 - its ability to produce multiply charged ions
Electrospray ionization (ESI)

- Desolvation of ions occurs at atmospheric pressure and mass analyzer is maintained at lower pressure
- During movement, evaporation reduces droplet size
- Ions when enter into MS, droplets are dried using a stream of inert gas
(4) Mass analyzers
Types of mass analyzers

- Time-of-Flight (TOF)
- Ion Trap
- Quadrupole
- Magnetic Sector
- Orbitrap
- Ion Cyclotron Resonance

Mass analyzers: categories

- Scanning MS
 - TOF
 - MALDI
- Ion-beam MS
 - Quadrupole
- Trapping MS
 - IT, Orbitrap, and FT-ICR
 - ESI
Time of Flight (TOF)
Quadrupole

- Quadrupole (Q) – set of 4 parallel metallic rods
- Radio frequency mode
- Scanning mode
- Neutral loss scan and precursor ion scanning mode
Triple quadrupole mass spectrometer (TQ)

- TQ – 3 arrangements similar to quadrupole

Ion Trap
Ion Trap

- Consist of a chamber surrounded by a ring electrode and two end-cap electrodes
- Voltage applied to ring electrode determines which ion remain in the trap

Fourier transform ion cyclotron resonance
Fourier transform ion cyclotron resonance

- Uses cyclotron motion (cyclotron frequency) to resolve ions
- Most complex, difficult to operate
- Highest resolution, mass accuracy and sensitivity
- Multiple tandem experiments feasible
- MS/MS of very large ions feasible

(5) Hybrid-MS & MS configuration comparison
MALDI TOF-TOF

- MALDI can be coupled to tandem TOF-TOF or hybrid Q-TOF analyzers, separated by collision cell
- Much higher sensitivity than TQ and single TOF

Q-TOF

- Combines front part of a TQ with a TOF analyzer to measure the mass of the ions
MS: concepts review

Animation

Performance comparisons of MS instruments

<table>
<thead>
<tr>
<th>Instrument</th>
<th>Resolution</th>
<th>Mass Accuracy</th>
<th>Sensitivity</th>
<th>Scan Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>LIT/LTQ (Linear Ion Trap)</td>
<td>2000</td>
<td>100 ppm</td>
<td>Femtomole</td>
<td>Fast</td>
</tr>
<tr>
<td>TQ (Triple Quadrupole)</td>
<td>2000</td>
<td>100 ppm</td>
<td>Attomole</td>
<td>Moderate</td>
</tr>
<tr>
<td>LTQ-Orbitrap</td>
<td>100,000</td>
<td>2 ppm</td>
<td>Femtomole</td>
<td>Moderate</td>
</tr>
<tr>
<td>LTQ-FTICR</td>
<td>500,000</td>
<td>< 2 ppm</td>
<td>Femtomole</td>
<td>Slow</td>
</tr>
<tr>
<td>Q-TOF</td>
<td>10,000</td>
<td>2-5 ppm</td>
<td>Attomole</td>
<td>Moderate, Fast</td>
</tr>
</tbody>
</table>

Summary

- Mass Spectrometry work-flow
- In-gel digestion
- Liquid chromatography
- Ionization source
- Mass analyzers
- Tandem mass spectrometry

REFERENCES

REFERENCES

ACKNOWLEDGEMENT

- Agilent Technologies: www.home.agilent.com/agilent/
- Andrew J Link. CSHL Proteomics Course 2008