Lecture 5

An Overview of Static Optimization – II

Prof. Radhakant Padhi
Dept. of Aerospace Engineering
Indian Institute of Science - Bangalore

Topics

• Constrained optimization with inequality constraints

• Numerical Optimization

• Numerical examples
Constrained Optimization with Inequality Constraints

Prof. Radhakant Padhi
Dept. of Aerospace Engineering
Indian Institute of Science - Bangalore

Constrained Optimization with Inequality Constraints: A naïve approach

Remark: One way of dealing with inequality constraints for the variables is as follows:

Let \(x_{i_{\text{min}}} \leq x_i \leq x_{i_{\text{max}}} \) (Important for control problems)

Replace: \(x_i = x_{i_{\text{min}}} + \left(x_{i_{\text{max}}} - x_{i_{\text{min}}} \right) \sin^2 \alpha_i \)

Consider \(\alpha_i \) as a free variable.

Note: This approach does not work in general.
Optimization with Inequality Constraints

Problem: Maximize / Minimize: \(J(X) \in \mathbb{R}, \ X \in \mathbb{R}^n \)

Subject to: \(\begin{bmatrix} g_1(X) \\ \vdots \\ g_m(X) \end{bmatrix} \triangleq \begin{bmatrix} 0 \\ \vdots \\ 0 \end{bmatrix} \)

Solution: First, introduce "slack variables" \(\mu_1, \ldots, \mu_m \) to convert inequality constraints to equality constraints as follows:

\[
\begin{aligned}
& f_s(X, \mu) \triangleq \begin{bmatrix} g_1(X) + \mu_1^2 \\ \vdots \\ g_m(X) + \mu_m^2 \end{bmatrix} = \begin{bmatrix} 0 \\ \vdots \\ 0 \end{bmatrix} \\
& \lambda + \mu = \begin{bmatrix} \lambda_1 \\ \vdots \\ \lambda_m \\ \mu_1 \\ \vdots \\ \mu_m \end{bmatrix}
\end{aligned}
\]

Then follow the routine procedure for the equality constraints.

Augmented PI: \(\bar{J}(X, \lambda, \mu) = J(X) + \sum_{j=1}^{m} \left(\lambda_j g_j(X) + \mu_j^2 \right) \)

Necessary Conditions:

\[
\begin{align*}
\frac{\partial \bar{J}}{\partial x_i} &= \frac{\partial J}{\partial x_i} + \sum_{j=1}^{m} \lambda_j \frac{\partial g_j}{\partial x_i} = 0, \quad i = 1, \ldots, n \\
\frac{\partial \bar{J}}{\partial \lambda_j} &= g_j(X) + \mu_j^2 = 0, \quad j = 1, \ldots, m \\
\frac{\partial \bar{J}}{\partial \mu_j} &= 2 \lambda_j \mu_j = 0, \quad j = 1, \ldots, m
\end{align*}
\]
Optimization with Inequality Constraints

\[\frac{\partial T}{\partial \lambda_j} = g_j(X) + \mu_j^2 = 0 \]

\[g_j(X) = -\mu_j^2 \]

\[\lambda_j g_j = -\mu_j \lambda_j \mu_j \]

But \[\frac{\partial T}{\partial \mu_j} = 2\lambda_j \mu_j = 0 \]

Hence \[\lambda_j g_j = 0 \]

This leads to the conclusion that either \(\lambda_j = 0 \) or \(g_j = 0 \)

i.e.

If a constraint is strictly an inequality constraint, then the problem can be solved without considering it.

Otherwise, the problem can be solved by considering it as an equality constraint.

Optimization with Inequality Constraints (single variable case)

Let us assume:

(i) a maximization problem

(ii) \(g_j \) is active, i.e. \(g_j = 0 \)

Let

(i) \(X \) is a point where a maximum occurs

(ii) \(\Delta x_i \) (a small change) that causes \(g_j < 0 \)
Optimization with Inequality Constraints (single variable case)

In this case,

(i) \(\frac{dJ}{dx_i} \Delta x_i < 0 \) (since \(J \) is a maximum)

(ii) \(\frac{dg_j}{dx_i} \Delta x_i < 0 \)

Hence,

(i) If \(\Delta x_i > 0 \), then \(\frac{\partial J}{\partial x_i} < 0 \) & \(\frac{\partial g_j}{\partial x_i} < 0 \) (both negative)

(ii) If \(\Delta x_i < 0 \), then \(\frac{\partial J}{\partial x_i} > 0 \) & \(\frac{\partial g_j}{\partial x_i} > 0 \) (both positive)

Optimization with Inequality Constraints (single variable case)

Necessary condition:

\[
\frac{\partial J}{\partial x_i} + \frac{\partial}{\partial x_i} (\lambda_j g_j) = 0
\]

\[
\frac{\partial J}{\partial x_i} = -\frac{\partial}{\partial x_i} (\lambda_j g_j)
\]

\[
\frac{\partial J}{\partial x_i} = -\lambda_j \left(\frac{\partial g_j}{\partial x_i} \right)
\]

But \(\frac{\partial J}{\partial x_i} \) & \(\frac{\partial g_j}{\partial x_i} \) are either both positive or both negative

Hence, \(\lambda_j < 0 \) for maximization!
Necessary Conditions: Karush-Kuhn-Tucker (KKT) Conditions

\[\frac{\partial J}{\partial x_i} = \frac{\partial J}{\partial x_i} + \sum_{j=1}^{m} \lambda_j \frac{g_j}{\partial x_i} = 0, \quad i = 1, \ldots, n \quad (n \text{ equations}) \]

\[\lambda_j g_j(X) = 0, \quad j = 1, \ldots, m \quad (m \text{ equations}) \]

For \(J(X) \) to be MINIMUM
\[
\begin{align*}
\text{if } g_j(X) &\leq 0 \quad \text{then } \lambda_j \geq 0 \\
\text{if } g_j(X) &\geq 0 \quad \text{then } \lambda_j \leq 0
\end{align*}
\]
(opposite sign)

For \(J(X) \) to be MAXIMUM
\[
\begin{align*}
\text{if } g_j(X) &\leq 0 \quad \text{then } \lambda_j \leq 0 \\
\text{if } g_j(X) &\geq 0 \quad \text{then } \lambda_j \geq 0
\end{align*}
\]
(same sign)

Comments on Karush-Kuhn-Tucker (KKT) Conditions

- One should explore all possibilities in the Karush-Kuhn-Tucker conditions to arrive at an appropriate conclusion
- Karush-Kuhn-Tucker conditions are only “necessary conditions”
- Sufficiency check demands the concept of “convexity”
Convex/Concave Function $f(x)$

- A function is called **convex**, if a straight line drawn between any two points on the surface generated by the function lies completely above or on the surface.
- If the line lies strictly above the surface, then the function is called **strictly convex**.
- If the line lies below the surface, then the function is called a **concave**.

![Diagram of Convex/Concave Function](image)

Result for Local Convexity/Concavity of $f(X)$ at X^*

<table>
<thead>
<tr>
<th>Definition</th>
<th>Eigenvalues</th>
</tr>
</thead>
<tbody>
<tr>
<td>Strictly convex</td>
<td>$\lambda_i > 0, \forall i$</td>
</tr>
<tr>
<td>Convex</td>
<td>$\lambda_i \geq 0, \forall i$</td>
</tr>
<tr>
<td>Strictly concave</td>
<td>$\lambda_i < 0, \forall i$</td>
</tr>
<tr>
<td>Concave</td>
<td>$\lambda_i \leq 0, \forall i$</td>
</tr>
<tr>
<td>No classification</td>
<td>Some $\lambda_i > 0$. Rest are ≤ 0</td>
</tr>
</tbody>
</table>
Conditions for which Kuhn-Tucker Conditions are also Sufficient

<table>
<thead>
<tr>
<th>Condition</th>
<th>(J(X))</th>
<th>All (g_j(X))</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum</td>
<td>Strictly concave</td>
<td>Convex</td>
</tr>
<tr>
<td>Minimum</td>
<td>Strictly convex</td>
<td>Convex</td>
</tr>
</tbody>
</table>

Example

Problem: Minimize: \(J(X) = (x_1^2 + x_2^2) \)
Subject to: \((x_1 - x_2) \leq 5 \)
\((x_1 - x_2) \geq 1 \)

Solution: \(g_1(X) = (x_1 - x_2 - 5) \leq 0 \)
\(g_2(X) = (-x_1 + x_2 + 1) \leq 0 \)
\(\mathcal{J} = (x_1^2 + x_2^2) + \lambda_1 (x_1 - x_2 - 5) + \lambda_2 (-x_1 + x_2 + 1) \)
Example: Karush-Kuhn-Tucker Conditions

\[
\begin{align*}
\frac{\partial J}{\partial x_1} &= 2x_1 + \lambda_1 - \lambda_2 = 0 \\
\frac{\partial J}{\partial x_2} &= 2x_2 - \lambda_1 + \lambda_2 = 0 \\
\lambda_1 (x_1 - x_2 - 5) &= 0 \\
\lambda_2 (-x_1 + x_2 + 1) &= 0 \\
(x_1 - x_2 - 5) &\leq 0 \\
(-x_1 + x_2 + 1) &\leq 0 \\
\lambda_1 &\geq 0 \\
\lambda_2 &\geq 0
\end{align*}
\]

Note: \(x_2 = -x_1 \)

All possible solutions should be investigated

Feasible Solution of Karush-Kuhn-Tucker Conditions

- Case – 1: \(\lambda_1 = 0, \lambda_2 \neq 0, \) Feasible: \(x_1 = \frac{1}{2}, x_2 = -\frac{1}{2} \)
- Case – 2: \(\lambda_1 = 0, \lambda_2 = 0, \) Not Feasible: \(x_1 = x_2 = 0 \)
- Case – 3: \(\lambda_1 \neq 0, \lambda_2 = 0, \) Not Feasible: \(x_1 = \frac{5}{2}, x_2 = -\frac{5}{2} \)
- Case – 4: \(\lambda_1 \neq 0, \lambda_2 \neq 0, \) Not Feasible: No Solution!
Sufficiency condition

\[J(X) = (x_1^2 + x_2^2) \]

is strictly convex. \(g_1(X), \ g_2(X) \) are also convex.

Hence, Karush-Kuhn-Tucker conditions are both Necessary and Sufficient.

Moreover, \(\frac{\partial^2 J}{\partial X^2} = \begin{bmatrix} 2 & 0 \\ 0 & 2 \end{bmatrix} \geq 0 \) and it does not depend on the value of \(X \).

Hence, \(X^* = \begin{bmatrix} 1/2 \\ -1/2 \end{bmatrix}^T \) is the GLOBAL minimum!

Numerical Optimization

Prof. Radhakant Padhi

Dept. of Aerospace Engineering

Indian Institute of Science - Bangalore
Basic Philosophy

1. Start with a meaningful initial guess value X^1
2. Find a search direction $p^k, \ k = 1, 2, \ldots$
3. Update the guess value $X^{k+1} = X^k + \alpha p^k, \ \alpha > 0$
4. Repeat Steps 2 & 3 until convergence, i.e.
$$\left\| J(X^{k+1}) - J(X^k) \right\| < \text{tol}$$

Unconstrained Optimization: Steepest Descent Search

$$J(X^{k+1}) = J(X^k) + \left[\nabla J(X^k) \right]^T (X^{k+1} - X^k) + \text{HOT}$$
$$J(X^{k+1}) - J(X^k) \approx \left[\nabla J(X^k) \right]^T \frac{(X^{k+1} - X^k)}{\alpha p^k}$$
$$= \alpha \left[\nabla J(X^k) \right]^T p^k$$

Hence, if $p^k = -\nabla J(X^k)$ (steepest descent direction)
$$[J(X^{k+1}) - J(X^k)] = -\alpha \left[\nabla J(X^k) \right]^T \left[\nabla J(X^k) \right] \ (\alpha > 0)$$
$$< 0$$
Unconstrained Optimization:
Pictorial Representation

\[f(x^j) = J(X) \]
\[f(x^j) = J(X^k) \]
\[p^j = p^k \]

Note:

- Search along \(\nabla f(x^j) \) until the minimum is obtained
 - Find three guess values of \(p \), such that there is an up-down-up behaviour
 - Fit a quadratic curve (parabola) for these three points
 - Minimum of this quadratic curve is the updated value
- Find a new direction at this point
- Repeat the procedure

Reference: R. D. Robinett III, D. G. Wilson, G. R. Eisler and J. E. Hurtado,
Optimal Control, Guidance and Estimation

Unconstrained Optimization:
Pictorial Representation of Line Search

Reference: R. D. Robinett III, D. G. Wilson, G. R. Eisler and J. E. Hurtado,

Unconstrained Optimization:
Newton’s Method

\[
\nabla J(X^{k+1}) = \nabla J(X^k) + \left[\nabla^2 J(X^k) \right] (X^{k+1} - X^k) + \text{HOT}
\]

(at extremum point)

\[
0 = \nabla J(X^k) + \alpha \left[\nabla^2 J(X^k) \right] p^k
\]

\[
p^k = -\left(\frac{1}{\alpha} \right) \left[\nabla J(X^k) \right]^{-1} \nabla J(X^k)
\]

\[
p^k = -\beta \left[\nabla^2 J(X^k) \right]^{-1} \nabla J(X^k), \quad \beta > 0
\]

Advantage: Fast convergence
Drawback: Computation of \(\left[\nabla^2 J(X^k) \right]^{-1} \) is not trivial and can be computationally intensive
Constrained Optimization: Equality Constraint

Problem: Minimize \(J(X) \in \mathbb{R} \left(X \in \mathbb{R}^n \right) \)
Subject to \(f(X) = 0 \)
where, \(f(X) = [f_1(X) \cdots f_m(X)]^T \in \mathbb{R}^m \)

Solution Procedure:
Formulate an augmented cost function
\[
\tilde{J}(X, \lambda) \triangleq J(X) + \lambda^T f(X)
\]

Constrained Optimization: Steepest Descent Search

\[
\begin{align*}
\tilde{J}(X^{k+1}, \lambda^{k+1}) & = \tilde{J}(X^k, \lambda^k) + \left(\frac{\partial \tilde{J}}{\partial X} \right)^T_{X^k, \lambda^k} (X^{k+1} - X^k) + \left(\frac{\partial \tilde{J}}{\partial \lambda} \right)^T_{X^k, \lambda^k} (\lambda^{k+1} - \lambda^k) \\
& = \tilde{J}(X^k, \lambda^k) + \nabla J(X^k) + (\lambda^k)^T \nabla f(X^k) (X^{k+1} - X^k) + \left(\frac{f(X^k)}{0} \right)^T (\lambda^{k+1} - \lambda^k)
\end{align*}
\]

\[
\tilde{J}(X^{k+1}, \lambda^{k+1}) - \tilde{J}(X^k, \lambda^k) = \alpha \left(\nabla J(X^k) + (\lambda^k)^T \nabla f(X^k) \right)^T p^k \leq 0
\]

This suggests:
\[
p^k = - \left(\nabla J(X^k) + (\lambda^k)^T \nabla f(X^k) \right)
\]
Constrained Optimization: Pictorial Representation

At optimum point:

\[f(X) = J(X) \]
\[f(X^*) = J(X^k) \]
\[g(X) = f(X) \]
\[p^* = p^k \]

MATLAB Function: *fmincon*

Problem: Minimize: \[f(X) \in \mathbb{R} \quad (X \in \mathbb{R}^n) \]

Subject to:

\[h(X) \leq 0 \in \mathbb{R}^m \]
\[g(X) = 0 \]
\[X_l \leq X \leq X_u \]
\[DX \leq b \]
\[D_{eq} X = b_{eq} \]
References

Thanks for the Attention....!!

Questions ... ??