Module-2

Lecture-4

Introduction to Performance of Flight and Experiments
Performance of flight

Module Agenda

• Aerodynamic nomenclature used for flight performance

• Definition of forces, in steady and symmetrical straight line flight

• Cruise flight
 Thrust and power required
 Thrust and power available
 Maximum flight velocity
 Altitude effects on power available and power required
 Range and endurance.

• Climb performance
 Maximum angle of climb
 Maximum rate of climb
 Altitude effects on power available and power required

• Estimation of profile Drag coefficient \(C_{D_e} \) and Oswalds efficiency \(e \) of an aircraft from experimental data obtained is steady and level flight.
Aerodynamic nomenclature used for flight performance

![Figure 1: Definition of angles, axes and velocities in steady, symmetrical and straight line flight](image)

- V: Air relative velocity of airplane
- X_b: Body fixed X-axis (Along fuselage reference or chord line)
- X_s: Stability axis X-axis (X_s-axis align along the air relative velocity)
- Z_b: Body fixed Z-axis
- Z_s: Stability axis Z-axis
- α: Angle of attack, defined as the angle between X_b and the horizon
- θ: Airplane pitch attitude angle, defined as the angle between X_b and the horizon
- γ: Flight path angle, defined as the angle between V and the horizon
- V_v: Vertical-velocity component, also known as the rate-of-climb
- V_h: Horizontal-velocity component
- ϕ_T: Thrust force inclination, defined as the angle between X_b and the thrust line of action (ϕ_T is Zero in Figure 1)
- RC: Rate of Climb
Definition of forces, in steady and symmetrical straight line flight

In flight an airplane, can be said to be under the influence of four main forces:

1. The Lift, L, acting vertically upwards and is perpendicular to the air relative velocity.

2. The Weight of the airplane, W, acting vertically downwards through the centre of gravity.

3. The Thrust T, delivered by the engine or engine(s).

4. The Drag, D, acting in the direction opposite to the air relative velocity.

These forces are depicted in Figure 2.

Figure 2: Definition of forces in steady, symmetrical and straight line flight