NOC: Risk and Reliability of offshore structures - Video course

COURSE OUTLINE

Considering the importance of offshore structures, one has to recognize that there are other intrinsic uncertainties such as material properties, analysis methods, design procedures etc, which are addressed rationally. A detailed knowledge of reliability of offshore structures using probabilistic tools becomes need of the hour for both industry and academia. Offshore activities, on one hand, lead to increase in societal wealth, and, on the other hand, make society vulnerable to risks. An offshore engineer is usually accountable for the decisions that he takes. A hallmark of professionalism is to quantify the risks and benefits involved. The present course aims to introduce the basics of the structural reliability analysis procedures. The Registrants would benefit from the course by learning the basics of reliability-based design and principles underlying code calibration, which would provide the groundwork to embark upon research in this field. Key focus will be on safety and reliability issues of offshore facilities during analysis and design, inspection and planning.

COURSE DETAIL

<table>
<thead>
<tr>
<th>ModuleNo.</th>
<th>Topics</th>
</tr>
</thead>
</table>
| 1. | Concepts of probability
 Sampling statistics
 Types of uncertainties
 Modeling random variables like loads, material properties etc
 Introduction to classical reliability theories
 Error estimation |
| 2. | Levels of reliability
 Reliability estimates
 FOSM, AFOSM and application problems
 Codes of practice of safety check
 Reliability bounds of structural systems
 Treatment of geometric variables
 Probabilistic methods of code calibrations |
| 3. | Application to offshore structures
 Stochastic process
 Gaussian process
 Risk assessment
 Hazard identification
 ETA, FTA
 Risk modeling and Risk picture
 Probabilistic risk assessment |

References:

a) Text books:

Research articles

specific systems and software engineering technology (ASSET '98). TX: Dallas; 1998.
19. Helminen A, Pulld