Course Name: Deep Learning

Course abstract

Deep Learning has received a lot of attention over the past few years and has been employed successfully by companies like Google, Microsoft, IBM, Facebook, Twitter etc. to solve a wide range of problems in Computer Vision and Natural Language Processing. In this course we will learn about the building blocks used in these Deep Learning based solutions. Specifically, we will learn about feedforward neural networks, convolutional neural networks, recurrent neural networks and attention mechanisms. We will also look at various optimization algorithms such as Gradient Descent, Nesterov Accelerated Gradient Descent, Adam, AdaGrad and RMSProp which are used for training such deep neural networks. At the end of this course students would have knowledge of deep architectures used for solving various Vision and NLP tasks


Course Instructor

Media Object

Mitesh M. Khapra

Mitesh M. Khapra is an Assistant Professor in the Department of Computer Science and Engineering at IIT Madras. While at IIT Madras he plans to pursue his interests in the areas of Deep Learning, Multimodal Multilingual Processing, Dialog systems and Question Answering. Prior to that he worked as a Researcher at IBM Research India. During the four and half years that he spent at IBM he worked on several interesting problems in the areas of Statistical Machine Translation, Cross Language Learning, Multimodal Learning, Argument Mining and Deep Learning. This work led to publications in top conferences in the areas of Computational Linguistics and Machine Learning. Prior to IBM, he completed his PhD and M.Tech from IIT Bombay in Jan 2012 and July 2008 respectively. His PhD thesis dealt with the important problem of reusing resources for multilingual computation. During his PhD he was a recipient of the IBM PhD Fellowship (2011) and the Microsoft Rising Star Award (2011). He is also a recipient of the Google Faculty Research Award (2017).
More info

Teaching Assistant(s)

No teaching assistant data available for this course yet
 Course Duration : Jul-Oct 2018

  View Course

 Syllabus

 Enrollment : 18-Apr-2018 to 30-Jul-2018