
Operating Systems/Resource Sharing and Management Lecture Notes

PCP Bhatt/IISc, Bangalore M6/V1/June 04/1

Module 6: Resource Sharing and Management
The main motivation for scheduling various OS services is to maximize the usage of CPU

resource, memory, and other IO resources. Consider the usage of a printer as an output

resource. A user takes printouts only once in a while. A printer usage, therefore, can be

shared amongst many users. The motivation to share a resource may come from several

reasons. Sharing enhances utilization of resources immensely.

Sharing a resource is imperative in cases where we have a very expensive and specialized

resource. For instance, an image processing resource, connected to a computer system, is

a special resource. Such a resource is used in short periods of time, i.e. it is sparingly

used. Similarly, in the context of a large project, there may be a file or a data-base which

is shared amongst many users. Such a shared file may need to be updated from several

sources. The shared file is then a shared resource. In this case, the sequencing of updates

may be very critical for preserving data integrity and consistency. It may affect temporal

semantics of the shared data. This is particularly true in transaction processing systems.

In this chapter we shall study how the resources may be scheduled for shared usage. In

particular, we shall study two very important concepts relating to mutual exclusion and

deadlocks.

6.1 Need for Scheduling

Resources may be categorized depending upon the nature of their use. To enforce

temporal sharing of a common resource, the OS needs a policy to schedule its usage. The

policy may depend upon the nature of resource, frequency of its use and the context of its

usage. In the case of a printer, the OS can spool printout requests. Printing, additionally,

requires that once a process is engaged in printing, it must have its exclusive usage till it

finishes the current print job. If that is not the case then the printouts from the printer

shall be garbled. Some specialized resources, like a flat-bed plotter, require an elaborate

initial set-up. So once assigned to a process, its usage better not be pre-empted. A process

that gets such a resource should be permitted to keep it till either the process terminates

or releases the resource. This is also true of a transaction which updates a shared data

record. The transaction should complete the record's update before another process is

given the access to the record.

Operating Systems/Resource Sharing and Management Lecture Notes

PCP Bhatt/IISc, Bangalore M6/V1/June 04/2

Processes may need more than one resource. It is quite possible that a process may not be

able to progress till it gets all the resources it needs. Let us suppose that a process P1

needs resources r1 and r2. Process P2 needs resources r2 and r3. Process P1 can proceed

only when it has both r1 and r2. If process P2 has been granted r2 then process P1 has to

wait till process P2 terminates or releases r2. Clearly, the resource allocation policy of an

OS can affect the overall throughput of a system.

6.2 Mutual Exclusion

The mutual exclusion is required in many situations in OS resource allocation. We shall

portray one such situation in the context of management of a print request. The print

process usually maintains a queue of print jobs. This is done by maintaining a queue of

pointers to the files that need to be printed. Processes that need to print a file store the file

address (a file pointer) into this queue. The printer spooler process picks up a file address

from this queue to print files. The spooler queue is a shared data structure amongst

processes that are seeking the printer services and the printer spooler process. The printer

spooler stores and manages the queue as shown in Figure 6.1. Let us consider just two

Figure 6.1: An example of mutual exclusion.

processes Pi, Pj that need to use printer. Let Ps denote the printer spooler process. The

shared queue data area is denoted by Q. Let us now envision the situation as depicted

below:

 Pi accesses Q and finds that a certain slot qs is free.

 Pi decides to copy in this area the address of the file it needs to print.

 Next Pj accesses Q and also finds the slot qs is free.

 Pj decides to copy in this area the address of file it needs to print.

 Pi copies the address of the area from which a file needs to be printed.

 Next Pj copies the address of the area from which a file needs to be printed.

 Ps reaches the slot at qs and prints the file pointed to by the address in qs.

Operating Systems/Resource Sharing and Management Lecture Notes

PCP Bhatt/IISc, Bangalore M6/V1/June 04/3

On examining the above sequence we find that both the processes Pi, and Pj may record

that their print jobs are spooled. As a matter of fact only the job from Pj was spooled. The

print job of Pi never gets done. If we had mutual exclusion then either process Pi or

process Pj , but not both, could have had an access to qs . A point to be noted here is that

Q is a shared data area (a resource) used by three processes Pi, Pj , and Ps. It also

establishes an inter-process communication (IPC) between processes that need printing

and the process which prints. Access to shared data resource that establishes inter-process

communication must be mutually exclusive. We shall later revisit mutual exclusion in

more detail in Section 6.5. There we shall discuss how to ensure mutually exclusive

access to resources. For now let us examine the conditions for deadlocks.

6.3 Deadlocks

We can understand the notion of a deadlock from the following simple real-life example.

To be able to write a letter one needs a letter pad and a pen. Suppose there in one letter

pad and one pen on a table with two persons seated around the table. We shall identify

these two persons as Mr. A and Ms. B. Both Mr. A and Ms. B are desirous of writing a

letter. So both try to acquire the resources they need. Suppose Mr. A was able to get the

letter pad. In the meantime, Ms. B was able to grab the pen. Note that each of them has

one of the two resources they need to proceed to write a letter. If they hold on to the

resource they possess and await the release of the resource by the other, then neither of

them can proceed. They are deadlocked. We can transcribe this example for processes

seeking resources to proceed with their execution.

Consider an example in which process P1 needs three resources r1; r2, and r3 before it can

make any further progress. Similarly, process P2 needs two resources r2 and r3. Also, let

us assume that these resources are such that once granted, the permission to use is not

withdrawn till the processes release these resources. The processes proceed to acquire

these resources. Suppose process P1 gets resources r1 and r3 and process P2 is able to get

resource r2 only. Now we have a situation in which process P1 is waiting for process P2 to

release r2 before it can proceed. Similarly, process P2 is waiting for process P1 to release

resource r3 before it can proceed. Clearly, this situation can be recognized as a deadlock

condition as neither process P1 nor process P2 can make progress. Formally, a deadlock is

a condition that may involve two or more processes in a state such that each is waiting for

release of a resource which is currently held by some other process.

Operating Systems/Resource Sharing and Management Lecture Notes

PCP Bhatt/IISc, Bangalore M6/V1/June 04/4

A graph model: In Figure 6.2 we use a directed graph model to capture the sense of

deadlock. The figure uses the following conventions.

 There are two kinds of nodes - circles and squares. Circles denote processes and

squares denote resources.

 A directed arc from a process node (a circle) to a resource node denotes that the

process needs that resource to proceed with its execution.

 A directed arc from a square (a resource) to a circle denotes that the resource is

held by that process.

With the conventions given above, when a process has all the resources it needs, it can

execute. This condition corresponds to the following.

 The process node has no arcs directed out to a resource node.

 All the arcs incident into this process node are from resource nodes.

Figure 6.2: A directed graph model.

In Figure 6.2, P1 holds r4 but awaits release of r1 to proceed with execution; P2 holds r1

but awaits release of r2 to proceed with execution; P3 holds r2 but awaits release of r3 to

proceed with execution; P4 holds r3 but awaits release of r4 to proceed with execution.

Clearly, all the four processes are deadlocked.

Formally, a deadlock occurs when the following four conditions are present

simultaneously.

 Mutual exclusion: Each resource can be assigned to at most one process only.

 Hold and wait: Processes hold a resource and may seek an additional resource.

 No pre-emption: Processes that have been given a resource cannot be pre-

empted to release their resources.

Operating Systems/Resource Sharing and Management Lecture Notes

PCP Bhatt/IISc, Bangalore M6/V1/June 04/5

 Circular wait: Every process awaits release of at least one resource held by some

other processes.

Dead-lock Avoidance: A deadlock requires the above four conditions to occur at the

same time, i.e. mutual exclusion, hold and wait, no pre-emption and circular wait to occur

at the same time. An analysis and evaluation of the first three conditions reveals that

these are necessary conditions. Also, we may note that the circular wait implies hold and

wait. The question is how does one avoid having a deadlock? We shall next examine a

few arguments. The first one favors having multiple copies of resources. The second one

argues along preventive lines, i.e. do not permit conditions for deadlock from occurring.

These arguments bring out the importance of pre-empting.

The infinite resource argument: One possibility is to have multiple resources of the

same kind. In that case, when one copy is taken by some process, there is always another

copy available. Sometimes we may be able to break a deadlock by having just a few

additional copies of a resource. In Figure 6.3 we show that there are two copies of

resource r2. At the moment, processes P1 and P2 are deadlocked. When process P3

terminates a copy of resource r2 is released. Process P2 can now have all the resources it

needs and the deadlock is immediately broken. P1 will get r1 once P2 terminates and

releases the resources held.

The next pertinent question is: how many copies of each resource do we need?

Unfortunately, theoretically, we need an infinite number of copies of each resource!!

Note even in this example, if P3 is deadlocked, then the deadlock between P1 and P2

cannot be broken. So, we would need one more copy of resource r2. That clearly

demonstrates the limitation of the multiple copies argument.

Never let the conditions occur: It takes some specific conditions to occur at the same

time to cause deadlock. This deadlock avoidance simply states that do not let these

Operating Systems/Resource Sharing and Management Lecture Notes

PCP Bhatt/IISc, Bangalore M6/V1/June 04/6

conditions occur at the same time. Let us analyze this a bit deeper to determine if we can

indeed prevent these conditions from occurring at the same time. The first condition is

mutual exclusion. Unfortunately, many resources do require mutual exclusion!! So we

must live with it and design our systems bearing in mind that mutual exclusion would

have to be provided for. Next, let us consider the condition of hold and wait. Since, hold

and wait is also implied by circular wait, we may look at the possibility of preventing any

circular waits. This may be doable by analyzing program structures. Now let us examine

pre-emption. It may not be the best policy to break a deadlock, but it works. Pre-emption

is clearly enforceable in most, if not all, situations. Pre-emption results in releasing

resources which can help some processes to progress, thereby breaking the deadlock. In

fact, many real-time OSs require pre-emption for their operation. For example, when a

certain critical condition arises, alarms must be set or raised. In some other cases an

emergency process may even take over by pre-empting the currently running process.

6.3.1 A Deadlock Prevention Method

In a general case, we may have multiple copies of resources. Also, processes may request

multiple copies of a resource. Modeling such a scenario as a graph is difficult. In such a

situation, it is convenient to use a matrix model. We shall use Figure 6.4 to explain the

matrix-based method. In Figure 6.4 we assume n processes and m kinds of resources. We

denote the ith resource by ri. We now define two vectors, each of size m.

Vector R = (r1; r2; ::::; rm) : ri = resources of type i with the system.

Vector A = (a1; a2; ::::; am) : ai = resources of type i presently available for allocation.

Initially with no allocations made, we have R = A. However, as allocations happen,

vector A shall be depleted. Also, when processes terminate and release their resources,

vector A gets updated to show additional resources that become available now. We also

define two matrices to denote allocations made and requests for the resources. There is a

row for each process and a column for each resource. Matrix AM and matrix RM

respectively have entries for allocation and requests. An entry ci,j in matrix AM denotes

the number of resources of type j currently allocated to process Pi. Similarly, qi,j in matrix

RM denotes the number of resources of type j requested by process Pi. This is depicted in

Figure 6.4. Below we state the three conditions which capture the constraints for the

model. The first condition always holds. The second condition holds when requests on

resources exceed capacity. In this condition not all processes can execute simultaneously.

Operating Systems/Resource Sharing and Management Lecture Notes

PCP Bhatt/IISc, Bangalore M6/V1/June 04/7

1. i,j j j1
c a rn

i=
⎡ ⎤+ ≤⎣ ⎦∑ .This condition states that the allocation of resource j to all the

processes plus the now available resource of kind j is always less than the ones

available with the system.

2. i,j j1
q rn

i=
⎡ ⎤ ≥⎣ ⎦∑ . This condition states that the requests for resources made by every

process may exceed what is available on the system.

3. In addition, we have the physical constraint i,j i,jjc q⎡ ⎤∀ ≤⎣ ⎦ . This condition states

that allocation of a resource j to a process may be usually less than the request

made by the process. At the very best the process's request may be fully granted.

The matrix model captures the scenario where n processes compete to acquire one or

more copies of the m kinds of resources.

6.4 Deadlock Detection and Prevention Algorithms

In this section we shall discuss a few deadlock detection and prevention algorithms. We

shall employ both the graph and matrix models. We begin with the simple case when we

have one copy of each resource and have to make allocation to a set of processes. A

graph based detection algorithm: In our digraph model with one resource of one kind, the

detection of a deadlock requires that we detect a directed cycle in a processor resource

digraph. This can be simply stated as follows.

 Choose a process node as a root node (to initiate a depth first traversal).

 Traverse the digraph in depth first mode.

 Mark process nodes as we traverse the graph.

 If a marked node is revisited then a deadlock exists.

In the above steps we are essentially trying to detect the presence of a directed cycle.

Operating Systems/Resource Sharing and Management Lecture Notes

PCP Bhatt/IISc, Bangalore M6/V1/June 04/8

Bankers' Algorithm: This is a simple deadlock prevention algorithm. It is based on a

banker's mind-set: “offer services at no risk to the bank". It employs a policy of resource

denial if it suspects a risk of a deadlock. In other words, for a set of processes, resources

are allocated only when it shall not lead to a deadlock. The algorithm checks for the four

necessary conditions for deadlock. A deadlock may happen when any one of the four

conditions occurs. If a deadlock is likely to happen with some allocation, then the

algorithm simply does not make that allocation.

The manner of operation is as follows: The request of process i is assessed to determine

whether the process request can be met from the available resources of each kind. This

means ()i,j jj q a∀ ≤ . In that case, process i may be chosen to execute. In fact, the policy

always chooses that subset amongst the processes which can be scheduled to execute

without a deadlock.

Let us now offer a critique of the algorithm.

1. If there are deadlocked processes, they shall remain deadlocked. Bankers'

algorithm does not eliminate an existing deadlock.

2. Bankers' algorithm makes an unrealistic assumption. It stipulates that the resource

requirements for processes are known in advance. This may not be rare but then

there are processes which generate resource requests on the fly. These

dynamically generated requirements may change during the lifetime of a process.

3. With multi-programming, the number of live processes at any one time may not

be known in advance.

4. The algorithm does not stipulate any specific order in which the processes should

be run. So in some situations, it may choose an order different from the desired

order. Sometimes we do need processes to follow a specific order. This is true

when the processes must communicate in a particular sequence (see

synchronization example in Section 6.5).

5. Also, the algorithm assumes a fixed number of resources initially available on a

system. This too may vary over time.

A matrix based deadlock detection method: When multiple resources of each kind are

available, we use the matrix model shown in Figure 6.4 to detect deadlocks. We analyze

the requests of the processes (matrix RM) against initially available copies of each

Operating Systems/Resource Sharing and Management Lecture Notes

PCP Bhatt/IISc, Bangalore M6/V1/June 04/9

resource (vector A). This is what the algorithm below indicates. Following the

description of the algorithm there is a brief explanation of the same.

Procedure detect deadlock

begin

,1i i n∀ ≤ ≤ set marked(i) = false. These flags help us to detect marked processes whose

requirements can be satisfied.

deadlockpresent = false

All entries in matrix AM are initialized to zero.

While there are processes yet to be examined do

{

Pick a process Pi whose requests have not been examined yet.

For process Pi check if RMi ≤A then

{

allocate the resources;

marked(i) = true

Add allocation made to row AMi

Subtract this allocation from A to update A

}

}

If i∀ , marked(i) is true then deadlockpresent = false else deadlockpresent = true

end

We offer an alternative explanation for the above algorithm; let us assume that processes

P1 through Pn are to be allocated m kinds of resources. We begin with some tentative

allocation of resources starting with, say, P1 in sequence. Now let us consider an

intermediate step: the allocation for process during which we are determining allocation

for process Pi. The row corresponding to process Pi in matrix RM denotes its resource

requests. This row gives the number for each kind of resource requested by Pi. Recall that

vector A denotes the resources presently available for allocation. Now, let us suppose that

resource requests of process Pi can be met. In that case, vector RMi ≤ A. This means that

this process could be scheduled to execute and no deadlock as yet has manifested. This

allocation can then be reflected in matrix AMi. Also, vector A needs to be modified

Operating Systems/Resource Sharing and Management Lecture Notes

PCP Bhatt/IISc, Bangalore M6/V1/June 04/10

accordingly. Next, with the revised vector A, we try to meet the requirements of the next

process Pi+1 which is yet to be allocated with its resources. If we can exhaustively run

through the sequence then we do not have a deadlock. However, at some stage we may

find that its requirement of resources exceeds the available resources. Suppose this

happens during the time we attempt allocation for process Pi+k. In that case, we have a

deadlock for the subset of processes P1 through Pi+k. Recall that we are marking the

processes that obtain their allocation. So if we have all the processes marked then there is

no deadlock. If there is a set of processes that remain unmarked then we have a deadlock.

Notwithstanding the non-deterministic nature of this algorithm it always detects a

deadlock. Like the bankers' algorithm, this algorithm also does not help to eliminate an

existing deadlock. Deadlock elimination may require pre-emption or release of resources.

This may also result in a roll back in some transaction-oriented systems. This further

reinforces pre-emption as an effective deadlock elimination strategy.

6.5 Mutual Exclusion Revisited: Critical Sections

We have earlier seen that for devices like printers, an OS must provide for mutual

exclusion in operation. It is required for memory access as well. Whenever there is a

shared area accessed by two or more processes, we have to ensure that only one process

has write access at one time. The main motivation is to avoid a race condition amongst

processes. When a race occurs between processes (acting independent of each other),

each may annul others' operations (as we saw in our spooler example). Transaction-

oriented processing is notorious for the race conditions as it may lead to data integrity

problems. These problems are best taken care of by ensuring the process has exclusive

access to the data area (or the resource) where it has to perform the operation. So each

process operates in exclusion of access to the others. Hence, the term mutual exclusion.

Next we define a critical section of a program code in this context. By a “critical section”

we mean that section of code (in a process) which is executed exclusively, i.e. none of its

operations can be annulled. To prevent shared variables from being overwritten by

another process, a process must enter its critical section. Operating in critical sections

ensures mutual exclusion of processes. Well, how does one ensure such an operation?

OSs, including Unix, provides a facility called semaphore to allow processes to make use

of critical sections in exclusion to other processes. A semaphore is essentially a variable

which is treated in a special way. Access to a semaphore and operations on it are

Operating Systems/Resource Sharing and Management Lecture Notes

PCP Bhatt/IISc, Bangalore M6/V1/June 04/11

permitted only when it is in a free state. If a process locks a semaphore, others cannot get

access to it. However, every process must release the semaphore upon exiting its critical

section. In other words, a process may enter a critical section by checking and

manipulating a semaphore. When a process has entered its critical section, other

processes are prevented from accessing this shared variable. When a process leaves the

critical section, it changes the state of semaphore from locked to free. This permits

anyone of the waiting processes to now enter their critical sections and use the shared

variable. To make sure that the system actually works correctly, a notion of atomicity or

indivisibility is invoked, i.e. semaphore operations are run to completion without

interruptions as explained in the next section.

6.5.1 Basic Properties of Semaphores

Semaphores have the following properties.

 A semaphore takes only integer values. We, however, would limit to semaphores

that take only binary values. In general, we may even have a data-structure in

which every entry is a semaphore. Usually, such structures are required for

establishing a set of processes that need to communicate. These are also required

when a complex data structure like a record is shared.

 There are only two operations possible on a semaphore.

• A wait operation on a semaphore decreases its value by one.

 wait(s): while s < 0 do noop; s := s - 1;

• A signal operation increments its value, i.e. signal(s): s : = s + 1;

• A semaphore operation is atomic and indivisible. This essentially ensures

both wait and signal operations are carried out without interruption. This

may be done using some hardware support and can be explained as

follows. Recall in Section 1.2, we noticed that in Figure 1.3, the fetch,

execute and decode steps are done indivisibly. The interrupt signal is

recognized by the processor only after these steps have been carried out.

Essentially, this means it is possible to use disable and enable signals to

enforce indivisibility of operations. The wait and signal operations are

carried out indivisibly in this sense.

Operating Systems/Resource Sharing and Management Lecture Notes

PCP Bhatt/IISc, Bangalore M6/V1/June 04/12

Note that a process is blocked (busy waits) if its wait operation evaluates to a negative

semaphore value. Also, a blocked process can be unblocked when some other process

executes signal operation to increment semaphore to a zero or positive value. We next

show some examples using semaphores.

6.5.2 Usage of Semaphore

Suppose we have two processes P1 and P2 that need mutual exclusion. We shall use a

shared semaphore variable use with an initial value = 0. This variable is accessible from

both P1 and P2. We may require that both these processes have a program structure that

uses repeat – until pair as a perpetual loop. The program shall have the structure as shown

below:

repeat

Some process code here

wait (use);

enter the critical section (the process manipulates a shared area);

signal (use);

the rest of the process code.

until false;

With the repeat{until sequence as defined above, we have an infinite loop for both the

processes. On tracing the operations for P1 and P2 we notice that only one of these

processes can be in its critical section. The following is a representative operational

sequence. Initially, neither process is in critical section and, therefore, use is 0.

 Process P1 arrives at the critical section first and calls wait (use).

 It succeeds and enters the critical section setting use = - 1.

 Process P2 wants to enter its critical section. Calls wait procedure.

 As use < 0. P2 does a busy wait.

 Process P1 executes signal and exits its critical section. use = 0 now.

 Process P2 exits busy wait loop. It enters its critical section use = -1.

The above sequence continues.

Yet another good use of a semaphore is in synchronization amongst processes. A process

typically may have a synchronizing event. Typically one process generates an event and

the other process awaits the occurrence of that event to proceed further. Suppose we have

our two processes, Pi and Pj . Pj can execute some statement sj only after a statement si in

Operating Systems/Resource Sharing and Management Lecture Notes

PCP Bhatt/IISc, Bangalore M6/V1/June 04/13

process Pi has been executed. This synchronization can be achieved with a semaphore se

initialized to -1 as follows:

 In Pi execute the sequence si; signal (se);

 In Pj execute wait (se); sj ;

Now process Pj must wait completion of si before it can execute sj . With this example, we

have demonstrated use of semaphores for inter-process communication. We shall next

discuss a few operational scenarios where we can use semaphores gainfully.

6.5.3 Some Additional Points

The primary use of semaphore which we have seen so far was to capture when a certain

resource is “in use" or “free". Unix provides a wait instruction to invoke a period of

indefinite wait till a certain resource may be in use. Also, when a process grabs a

resource, the resource is considered to be “locked".

So far we have seen the use of a two valued or binary semaphore. Technically, one may

have a multi-valued semaphore. Such a semaphore may have more than just two values to

capture the sense of multiple copies of a type of resource. Also, we can define an array of

semaphores i.e. each element of the array is a semaphore. In that case, the array can be

used as a combination for several resources or critical operations. This is most useful in

databases where we sometimes need to lock records, and even lock fields. This is

particularly true of transaction processing systems like bank accounts, air lines ticket

booking, and such other systems.

Since, semaphore usually has an integer value which is stored somewhere, it is

information the system can use. Therefore, there are processes with permission to access,

a time stamp of creation and other system-based attributes. Lastly, we shall give syntax

for defining semaphore in Unix environment.

 semaphoreId = semget(key_sem, no_sem, flag_sem)

Here semget is a system call, key_sem provides a key to access, no_sem= defines the

number of semaphores required in the set. Finally, flag_sem is a standard access control

defined by IPC_CREAT | 644 to give a rw-r--r-- access control.

In the next chapter we shall see the use of semaphore, as also, the code for other

interprocess communication mechanisms.

