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Module 6: Resource Sharing and Management 
The main motivation for scheduling various OS services is to maximize the usage of CPU 

resource, memory, and other IO resources. Consider the usage of a printer as an output 

resource. A user takes printouts only once in a while. A printer usage, therefore, can be 

shared amongst many users. The motivation to share a resource may come from several 

reasons. Sharing enhances utilization of resources immensely. 

Sharing a resource is imperative in cases where we have a very expensive and specialized 

resource. For instance, an image processing resource, connected to a computer system, is 

a special resource. Such a resource is used in short periods of time, i.e. it is sparingly 

used. Similarly, in the context of a large project, there may be a file or a data-base which 

is shared amongst many users. Such a shared file may need to be updated from several 

sources. The shared file is then a shared resource. In this case, the sequencing of updates 

may be very critical for preserving data integrity and consistency. It may affect temporal 

semantics of the shared data. This is particularly true in transaction processing systems. 

In this chapter we shall study how the resources may be scheduled for shared usage. In 

particular, we shall study two very important concepts relating to mutual exclusion and 

deadlocks. 

6.1 Need for Scheduling 

Resources may be categorized depending upon the nature of their use. To enforce 

temporal sharing of a common resource, the OS needs a policy to schedule its usage. The 

policy may depend upon the nature of resource, frequency of its use and the context of its 

usage. In the case of a printer, the OS can spool printout requests. Printing, additionally, 

requires that once a process is engaged in printing, it must have its exclusive usage till it 

finishes the current print job. If that is not the case then the printouts from the printer 

shall be garbled. Some specialized resources, like a flat-bed plotter, require an elaborate 

initial set-up. So once assigned to a process, its usage better not be pre-empted. A process 

that gets such a resource should be permitted to keep it till either the process terminates 

or releases the resource. This is also true of a transaction which updates a shared data 

record. The transaction should complete the record's update before another process is 

given the access to the record. 
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Processes may need more than one resource. It is quite possible that a process may not be 

able to progress till it gets all the resources it needs. Let us suppose that a process P1 

needs resources r1 and r2. Process P2 needs resources r2 and r3. Process P1 can proceed 

only when it has both r1 and r2. If process P2 has been granted r2 then process P1 has to 

wait till process P2 terminates or releases r2. Clearly, the resource allocation policy of an 

OS can affect the overall throughput of a system. 

6.2 Mutual Exclusion 

The mutual exclusion is required in many situations in OS resource allocation. We shall 

portray one such situation in the context of management of a print request. The print 

process usually maintains a queue of print jobs. This is done by maintaining a queue of 

pointers to the files that need to be printed. Processes that need to print a file store the file 

address (a file pointer) into this queue. The printer spooler process picks up a file address 

from this queue to print files. The spooler queue is a shared data structure amongst 

processes that are seeking the printer services and the printer spooler process. The printer 

spooler stores and manages the queue as shown in Figure 6.1. Let us consider just two  

 
Figure 6.1: An example of mutual exclusion. 

processes Pi, Pj that need to use printer. Let Ps denote the printer spooler process. The 

shared queue data area is denoted by Q. Let us now envision the situation as depicted 

below: 

 Pi accesses Q and finds that a certain slot qs is free. 

 Pi decides to copy in this area the address of the file it needs to print. 

 Next Pj accesses Q and also finds the slot qs is free. 

 Pj decides to copy in this area the address of file it needs to print. 

 Pi copies the address of the area from which a file needs to be printed. 

 Next Pj copies the address of the area from which a file needs to be printed. 

 Ps reaches the slot at qs and prints the file pointed to by the address in qs. 
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On examining the above sequence we find that both the processes Pi, and Pj may record 

that their print jobs are spooled. As a matter of fact only the job from Pj was spooled. The 

print job of Pi never gets done. If we had mutual exclusion then either process Pi or 

process Pj , but not both, could have had an access to qs . A point to be noted here is that 

Q is a shared data area (a resource) used by three processes Pi, Pj , and Ps. It also 

establishes an inter-process communication (IPC) between processes that need printing 

and the process which prints. Access to shared data resource that establishes inter-process 

communication must be mutually exclusive. We shall later revisit mutual exclusion in 

more detail in Section 6.5. There we shall discuss how to ensure mutually exclusive 

access to resources. For now let us examine the conditions for deadlocks. 

6.3 Deadlocks 

We can understand the notion of a deadlock from the following simple real-life example. 

To be able to write a letter one needs a letter pad and a pen. Suppose there in one letter 

pad and one pen on a table with two persons seated around the table. We shall identify 

these two persons as Mr. A and Ms. B. Both Mr. A and Ms. B are desirous of writing a 

letter. So both try to acquire the resources they need. Suppose Mr. A was able to get the 

letter pad. In the meantime, Ms. B was able to grab the pen. Note that each of them has 

one of the two resources they need to proceed to write a letter. If they hold on to the 

resource they possess and await the release of the resource by the other, then neither of 

them can proceed. They are deadlocked. We can transcribe this example for processes 

seeking resources to proceed with their execution. 

Consider an example in which process P1 needs three resources r1; r2, and r3 before it can 

make any further progress. Similarly, process P2 needs two resources r2 and r3. Also, let 

us assume that these resources are such that once granted, the permission to use is not 

withdrawn till the processes release these resources. The processes proceed to acquire 

these resources. Suppose process P1 gets resources r1 and r3 and process P2 is able to get 

resource r2 only. Now we have a situation in which process P1 is waiting for process P2 to 

release r2 before it can proceed. Similarly, process P2 is waiting for process P1 to release 

resource r3 before it can proceed. Clearly, this situation can be recognized as a deadlock 

condition as neither process P1 nor process P2 can make progress. Formally, a deadlock is 

a condition that may involve two or more processes in a state such that each is waiting for 

release of a resource which is currently held by some other process. 
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A graph model: In Figure 6.2 we use a directed graph model to capture the sense of 

deadlock. The figure uses the following conventions. 

 There are two kinds of nodes - circles and squares. Circles denote processes and 

squares denote resources. 

 A directed arc from a process node (a circle) to a resource node denotes that the 

process needs that resource to proceed with its execution. 

 A directed arc from a square (a resource) to a circle denotes that the resource is 

held by that process. 

With the conventions given above, when a process has all the resources it needs, it can 

execute. This condition corresponds to the following. 

 The process node has no arcs directed out to a resource node. 

 All the arcs incident into this process node are from resource nodes. 

 
Figure 6.2: A directed graph model. 

In Figure 6.2, P1 holds r4 but awaits release of r1 to proceed with execution; P2 holds r1 

but awaits release of r2 to proceed with execution; P3 holds r2 but awaits release of r3 to 

proceed with execution; P4 holds r3 but awaits release of r4 to proceed with execution. 

Clearly, all the four processes are deadlocked. 

Formally, a deadlock occurs when the following four conditions are present 

simultaneously. 

 Mutual exclusion: Each resource can be assigned to at most one process only. 

 Hold and wait: Processes hold a resource and may seek an additional resource. 

 No pre-emption:  Processes that have been given a resource cannot be pre-

empted to release their resources. 
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 Circular wait: Every process awaits release of at least one resource held by some 

other processes. 

Dead-lock Avoidance: A deadlock requires the above four conditions to occur at the 

same time, i.e. mutual exclusion, hold and wait, no pre-emption and circular wait to occur 

at the same time. An analysis and evaluation of the first three conditions reveals that 

these are necessary conditions. Also, we may note that the circular wait implies hold and 

wait. The question is how does one avoid having a deadlock? We shall next examine a 

few arguments. The first one favors having multiple copies of resources. The second one 

argues along preventive lines, i.e. do not permit conditions for deadlock from occurring. 

These arguments bring out the importance of pre-empting.  

The infinite resource argument: One possibility is to have multiple resources of the 

same kind. In that case, when one copy is taken by some process, there is always another 

copy available. Sometimes we may be able to break a deadlock by having just a few 

additional copies of a resource. In Figure 6.3 we show that there are two copies of 

resource r2. At the moment, processes P1 and P2 are deadlocked. When process P3 

terminates a copy of resource r2 is released. Process P2 can now have all the resources it 

needs and the deadlock is immediately broken. P1 will get r1 once P2 terminates and 

releases the resources held.  

 
The next pertinent question is: how many copies of each resource do we need? 

Unfortunately, theoretically, we need an infinite number of copies of each resource!! 

Note even in this example, if P3 is deadlocked, then the deadlock between P1 and P2 

cannot be broken. So, we would need one more copy of resource r2. That clearly 

demonstrates the limitation of the multiple copies argument.  

Never let the conditions occur: It takes some specific conditions to occur at the same 

time to cause deadlock. This deadlock avoidance simply states that do not let these 
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conditions occur at the same time. Let us analyze this a bit deeper to determine if we can 

indeed prevent these conditions from occurring at the same time. The first condition is 

mutual exclusion. Unfortunately, many resources do require mutual exclusion!! So we 

must live with it and design our systems bearing in mind that mutual exclusion would 

have to be provided for. Next, let us consider the condition of hold and wait. Since, hold 

and wait is also implied by circular wait, we may look at the possibility of preventing any 

circular waits. This may be doable by analyzing program structures. Now let us examine 

pre-emption. It may not be the best policy to break a deadlock, but it works. Pre-emption 

is clearly enforceable in most, if not all, situations. Pre-emption results in releasing 

resources which can help some processes to progress, thereby breaking the deadlock. In 

fact, many real-time OSs require pre-emption for their operation. For example, when a 

certain critical condition arises, alarms must be set or raised. In some other cases an 

emergency process may even take over by pre-empting the currently running process. 

6.3.1 A Deadlock Prevention Method 

In a general case, we may have multiple copies of resources. Also, processes may request 

multiple copies of a resource. Modeling such a scenario as a graph is difficult. In such a 

situation, it is convenient to use a matrix model. We shall use Figure 6.4 to explain the 

matrix-based method. In Figure 6.4 we assume n processes and m kinds of resources. We 

denote the ith resource by ri. We now define two vectors, each of size m.  

Vector R = (r1; r2; ::::; rm) : ri = resources of type i with the system. 

Vector A = (a1; a2; ::::; am) : ai = resources of type i presently available for allocation. 

Initially with no allocations made, we have R = A. However, as allocations happen, 

vector A shall be depleted. Also, when processes terminate and release their resources, 

vector A gets updated to show additional resources that become available now. We also 

define two matrices to denote allocations made and requests for the resources. There is a 

row for each process and a column for each resource. Matrix AM and matrix RM 

respectively have entries for allocation and requests. An entry ci,j in matrix AM denotes 

the number of resources of type j currently allocated to process Pi. Similarly, qi,j in matrix 

RM denotes the number of resources of type j requested by process Pi. This is depicted in 

Figure 6.4. Below we state the three conditions which capture the constraints for the 

model. The first condition always holds. The second condition holds when requests on 

resources exceed capacity. In this condition not all processes can execute simultaneously. 
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1. i,j j j1
c a rn

i=
⎡ ⎤+ ≤⎣ ⎦∑ .This condition states that the allocation of resource j to all the 

processes plus the now available resource of kind j is always less than the ones 

available with the system. 

2. i,j j1
q rn

i=
⎡ ⎤ ≥⎣ ⎦∑ . This condition states that the requests for resources made by every 

process may exceed what is available on the system. 

3. In addition, we have the physical constraint i,j i,jjc q⎡ ⎤∀ ≤⎣ ⎦ . This condition states 

that allocation of a resource j to a process may be usually less than the request 

made by the process. At the very best the process's request may be fully granted. 

The matrix model captures the scenario where n processes compete to acquire one or 

more copies of the m kinds of resources. 

 
6.4 Deadlock Detection and Prevention Algorithms 

In this section we shall discuss a few deadlock detection and prevention algorithms. We 

shall employ both the graph and matrix models. We begin with the simple case when we 

have one copy of each resource and have to make allocation to a set of processes. A 

graph based detection algorithm: In our digraph model with one resource of one kind, the 

detection of a deadlock requires that we detect a directed cycle in a processor resource 

digraph. This can be simply stated as follows. 

 Choose a process node as a root node (to initiate a depth first traversal). 

 Traverse the digraph in depth first mode. 

 Mark process nodes as we traverse the graph. 

 If a marked node is revisited then a deadlock exists. 

In the above steps we are essentially trying to detect the presence of a directed cycle.  
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Bankers' Algorithm: This is a simple deadlock prevention algorithm. It is based on a 

banker's mind-set: “offer services at no risk to the bank". It employs a policy of resource 

denial if it suspects a risk of a deadlock. In other words, for a set of processes, resources 

are allocated only when it shall not lead to a deadlock. The algorithm checks for the four 

necessary conditions for deadlock. A deadlock may happen when any one of the four 

conditions occurs. If a deadlock is likely to happen with some allocation, then the 

algorithm simply does not make that allocation.  

The manner of operation is as follows: The request of process i is assessed to determine 

whether the process request can be met from the available resources of each kind. This 

means  ( )i,j jj q a∀ ≤  . In that case, process i may be chosen to execute. In fact, the policy 

always chooses that subset amongst the processes which can be scheduled to execute 

without a deadlock. 

Let us now offer a critique of the algorithm. 

1. If there are deadlocked processes, they shall remain deadlocked. Bankers' 

algorithm does not eliminate an existing deadlock. 

2. Bankers' algorithm makes an unrealistic assumption. It stipulates that the resource 

requirements for processes are known in advance. This may not be rare but then 

there are processes which generate resource requests on the fly. These 

dynamically generated requirements may change during the lifetime of a process. 

3. With multi-programming, the number of live processes at any one time may not 

be known in advance. 

4. The algorithm does not stipulate any specific order in which the processes should 

be run. So in some situations, it may choose an order different from the desired 

order. Sometimes we do need processes to follow a specific order. This is true 

when the processes must communicate in a particular sequence (see 

synchronization example in Section 6.5). 

5. Also, the algorithm assumes a fixed number of resources initially available on a 

system. This too may vary over time. 

A matrix based deadlock detection method: When multiple resources of each kind are 

available, we use the matrix model shown in Figure 6.4 to detect deadlocks. We analyze 

the requests of the processes (matrix RM) against initially available copies of each 
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resource (vector A). This is what the algorithm below indicates. Following the 

description of the algorithm there is a brief explanation of the same. 

Procedure detect deadlock 

begin 

,1i i n∀ ≤ ≤  set marked(i) = false. These flags help us to detect marked processes whose 

requirements can be satisfied. 

deadlockpresent = false 

All entries in matrix AM are initialized to zero. 

While there are processes yet to be examined do 

{ 

Pick a process Pi whose requests have not been examined yet. 

For process Pi check if RMi ≤A then 

{ 

allocate the resources; 

marked(i) = true 

Add allocation made to row AMi 

Subtract this allocation from A to update A 

} 

} 

If i∀ ,  marked(i) is true then deadlockpresent = false else deadlockpresent = true 

end 

We offer an alternative explanation for the above algorithm; let us assume that processes 

P1 through Pn are to be allocated m kinds of resources. We begin with some tentative 

allocation of resources starting with, say, P1 in sequence. Now let us consider an 

intermediate step: the allocation for process during which we are determining allocation 

for process Pi. The row corresponding to process Pi in matrix RM denotes its resource 

requests. This row gives the number for each kind of resource requested by Pi. Recall that 

vector A denotes the resources presently available for allocation. Now, let us suppose that 

resource requests of process Pi can be met. In that case, vector RMi ≤  A. This means that 

this process could be scheduled to execute and no deadlock as yet has manifested. This 

allocation can then be reflected in matrix AMi. Also, vector A needs to be modified 
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accordingly. Next, with the revised vector A, we try to meet the requirements of the next 

process Pi+1 which is yet to be allocated with its resources. If we can exhaustively run 

through the sequence then we do not have a deadlock. However, at some stage we may 

find that its requirement of resources exceeds the available resources. Suppose this 

happens during the time we attempt allocation for process Pi+k. In that case, we have a 

deadlock for the subset of processes P1 through Pi+k. Recall that we are marking the 

processes that obtain their allocation. So if we have all the processes marked then there is 

no deadlock. If there is a set of processes that remain unmarked then we have a deadlock. 

Notwithstanding the non-deterministic nature of this algorithm it always detects a 

deadlock. Like the bankers' algorithm, this algorithm also does not help to eliminate an 

existing deadlock. Deadlock elimination may require pre-emption or release of resources. 

This may also result in a roll back in some transaction-oriented systems. This further 

reinforces pre-emption as an effective deadlock elimination strategy. 

6.5 Mutual Exclusion Revisited: Critical Sections 

We have earlier seen that for devices like printers, an OS must provide for mutual 

exclusion in operation. It is required for memory access as well. Whenever there is a 

shared area accessed by two or more processes, we have to ensure that only one process 

has write access at one time. The main motivation is to avoid a race condition amongst 

processes. When a race occurs between processes (acting independent of each other), 

each may annul others' operations (as we saw in our spooler example). Transaction-

oriented processing is notorious for the race conditions as it may lead to data integrity 

problems. These problems are best taken care of by ensuring the process has exclusive 

access to the data area (or the resource) where it has to perform the operation. So each 

process operates in exclusion of access to the others. Hence, the term mutual exclusion. 

Next we define a critical section of a program code in this context. By a “critical section” 

we mean that section of code (in a process) which is executed exclusively, i.e. none of its 

operations can be annulled. To prevent shared variables from being overwritten by 

another process, a process must enter its critical section. Operating in critical sections 

ensures mutual exclusion of processes. Well, how does one ensure such an operation? 

OSs, including Unix, provides a facility called semaphore to allow processes to make use 

of critical sections in exclusion to other processes. A semaphore is essentially a variable 

which is treated in a special way. Access to a semaphore and operations on it are 
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permitted only when it is in a free state. If a process locks a semaphore, others cannot get 

access to it. However, every process must release the semaphore upon exiting its critical 

section. In other words, a process may enter a critical section by checking and 

manipulating a semaphore. When a process has entered its critical section, other 

processes are prevented from accessing this shared variable. When a process leaves the 

critical section, it changes the state of semaphore from locked to free. This permits 

anyone of the waiting processes to now enter their critical sections and use the shared 

variable. To make sure that the system actually works correctly, a notion of atomicity or 

indivisibility is invoked, i.e. semaphore operations are run to completion without 

interruptions as explained in the next section. 

6.5.1 Basic Properties of Semaphores 

Semaphores have the following properties. 

 A semaphore takes only integer values. We, however, would limit to semaphores 

that take only binary values. In general, we may even have a data-structure in 

which every entry is a semaphore. Usually, such structures are required for 

establishing a set of processes that need to communicate. These are also required 

when a complex data structure like a record is shared. 

 There are only two operations possible on a semaphore. 

• A wait operation on a semaphore decreases its value by one.  

      wait(s): while s < 0 do noop; s := s - 1; 

• A signal operation increments its value, i.e. signal(s): s : = s + 1; 

• A semaphore operation is atomic and indivisible. This essentially ensures 

both wait and signal operations are carried out without interruption. This 

may be done using some hardware support and can be explained as 

follows. Recall in Section 1.2, we noticed that in Figure 1.3, the fetch, 

execute and decode steps are done indivisibly. The interrupt signal is 

recognized by the processor only after these steps have been carried out. 

Essentially, this means it is possible to use disable and enable signals to 

enforce indivisibility of operations. The wait and signal operations are 

carried out indivisibly in this sense. 
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Note that a process is blocked (busy waits) if its wait operation evaluates to a negative 

semaphore value. Also, a blocked process can be unblocked when some other process 

executes signal operation to increment semaphore to a zero or positive value. We next 

show some examples using semaphores. 

6.5.2 Usage of Semaphore 

Suppose we have two processes P1 and P2 that need mutual exclusion. We shall use a 

shared semaphore variable use with an initial value = 0. This variable is accessible from 

both P1 and P2. We may require that both these processes have a program structure that 

uses repeat – until pair as a perpetual loop. The program shall have the structure as shown 

below: 

repeat 

Some process code here 

wait (use); 

enter the critical section (the process manipulates a shared area); 

signal (use); 

the rest of the process code. 

until false; 

With the repeat{until sequence as defined above, we have an infinite loop for both the 

processes. On tracing the operations for P1 and P2 we notice that only one of these 

processes can be in its critical section. The following is a representative operational 

sequence. Initially, neither process is in critical section and, therefore, use is 0. 

 Process P1 arrives at the critical section first and calls wait (use). 

 It succeeds and enters the critical section setting use = - 1. 

 Process P2 wants to enter its critical section. Calls wait procedure. 

 As use < 0. P2 does a busy wait. 

 Process P1 executes signal and exits its critical section. use = 0 now. 

 Process P2 exits busy wait loop. It enters its critical section use = -1. 

The above sequence continues. 

Yet another good use of a semaphore is in synchronization amongst processes. A process 

typically may have a synchronizing event. Typically one process generates an event and 

the other process awaits the occurrence of that event to proceed further. Suppose we have 

our two processes, Pi and Pj . Pj can execute some statement sj only after a statement si in 
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process Pi has been executed. This synchronization can be achieved with a semaphore se 

initialized to -1 as follows: 

 In Pi execute the sequence si; signal (se); 

 In Pj execute wait (se); sj ; 

Now process Pj must wait completion of si before it can execute sj . With this example, we 

have demonstrated use of semaphores for inter-process communication. We shall next 

discuss a few operational scenarios where we can use semaphores gainfully. 

6.5.3 Some Additional Points 

The primary use of semaphore which we have seen so far was to capture when a certain 

resource is “in use" or “free". Unix provides a wait instruction to invoke a period of 

indefinite wait till a certain resource may be in use. Also, when a process grabs a 

resource, the resource is considered to be “locked". 

So far we have seen the use of a two valued or binary semaphore. Technically, one may 

have a multi-valued semaphore. Such a semaphore may have more than just two values to 

capture the sense of multiple copies of a type of resource. Also, we can define an array of 

semaphores i.e. each element of the array is a semaphore. In that case, the array can be 

used as a combination for several resources or critical operations. This is most useful in 

databases where we sometimes need to lock records, and even lock fields. This is 

particularly true of transaction processing systems like bank accounts, air lines ticket 

booking, and such other systems. 

Since, semaphore usually has an integer value which is stored somewhere, it is 

information the system can use. Therefore, there are processes with permission to access, 

a time stamp of creation and other system-based attributes. Lastly, we shall give syntax 

for defining semaphore in Unix environment. 

 semaphoreId = semget(key_sem, no_sem, flag_sem)  

Here semget is a system call, key_sem provides a key to access, no_sem= defines the 

number of semaphores required in the set. Finally, flag_sem is a standard access control 

defined by IPC_CREAT | 644 to give a rw-r--r-- access control. 

In the next chapter we shall see the use of semaphore, as also, the code for other 

interprocess communication mechanisms. 


