2.4 Roof systems

Trusses are triangular frame works, consisting of essentially axially loaded members which are more efficient in resisting external loads since the cross section is nearly uniformly stressed. They are extensively used, especially to span large gaps. Trusses are used in roofs of single storey industrial buildings, long span floors and roofs of multistory buildings, to resist gravity loads. Trusses are also used in walls and horizontal planes of industrial buildings to resist lateral loads and give lateral stability.

2.4.1 Analysis of trusses

Generally truss members are assumed to be joined together so as to transfer only the axial forces and not moments and shears from one member to the adjacent members (they are regarded as being pinned joints). The loads are assumed to be acting only at the nodes of the trusses. The trusses may be provided over a single span, simply supported over the two end supports, in which case they are usually statically determinate. Such trusses can be analysed manually by the method of joints or by the method of sections. Computer programs are also available for the analysis of trusses.

From the analysis based on pinned joint assumption, one obtains only the axial forces in the different members of the trusses. However, in actual design, the members of the trusses are joined together by more than one bolt or by welding, either directly or through larger size end gussets. Further, some of the members, particularly chord members, may be continuous over many nodes. Generally such joints enforce not only compatibility of translation but also compatibility of rotation of members meeting at the joint. As a result, the
members of the trusses experience bending moment in addition to axial force. This may not be negligible, particularly at the eaves points of pitched roof trusses, where the depth is small and in trusses with members having a smaller slenderness ratio (i.e. stocky members). Further, the loads may be applied in between the nodes of the trusses, causing bending of the members. Such stresses are referred to as secondary stresses. The secondary bending stresses can be caused also by the eccentric connection of members at the joints. The analysis of trusses for the secondary moments and hence the secondary stresses can be carried out by an indeterminate structural analysis, usually using computer software.

The magnitude of the secondary stresses due to joint rigidity depends upon the stiffness of the joint and the stiffness of the members meeting at the joint. Normally the secondary stresses in roof trusses may be disregarded, if the slenderness ratio of the chord members is greater than 50 and that of the web members is greater than 100. The secondary stresses cannot be neglected when they are induced due to application of loads on members in between nodes and when the members are joined eccentrically. Further the secondary stresses due to the rigidity of the joints cannot be disregarded in the case of bridge trusses due to the higher stiffness of the members and the effect of secondary stresses on fatigue strength of members. In bridge trusses, often misfit is designed into the fabrication of the joints to create prestress during fabrication opposite in nature to the secondary stresses and thus help improve the fatigue performance of the truss members at their joints.
2.4.2 Configuration of trusses

Pitched roof trusses

Most common types of roof trusses are pitched roof trusses wherein the top chord is provided with a slope in order to facilitate natural drainage of rainwater and clearance of dust/snow accumulation. These trusses have a greater depth at the mid-span. Due to this even though the overall bending effect is larger at mid-span, the chord member and web member stresses are smaller closer to the mid-span and larger closer to the supports. The typical span to maximum depth ratios of pitched roof trusses are in the range of 4 to 8, the larger ratio being economical in longer spans. Pitched roof trusses may have different configurations. In Pratt trusses [Fig. 2.9(a)] web members are arranged in such a way that under gravity load the longer diagonal members are under tension and the shorter vertical members experience compression. This allows for efficient...
design, since the short members are under compression. However, the wind uplift may cause reversal of stresses in these members and nullify this benefit. The converse of the Pratt is the Howe truss [Fig. 2.9(b)]. This is commonly used in light roofing so that the longer diagonals experience tension under reversal of stresses due to wind load.

Fink trusses [Fig. 2.9(c)] are used for longer spans having high pitch roof, since the web members in such truss are sub-divided to obtain shorter members.

Fan trusses [Fig. 2.9(d)] are used when the rafter members of the roof trusses have to be sub-divided into odd number of panels. A combination of fink and fan [Fig. 2.9(e)] can also be used to some advantage in some specific situations requiring appropriate number of panels.

Mansard trusses [Fig. 2.9(f)] are variation of fink trusses, which have shorter leading diagonals even in very long span trusses, unlike the fink and fan type trusses.

The economical span lengths of the pitched roof trusses, excluding the Mansard trusses, range from 6 m to 12 m. The Mansard trusses can be used in the span ranges of 12 m to 30 m.

Parallel chord trusses

The parallel chord trusses are used to support North Light roof trusses in industrial buildings as well as in intermediate span bridges. Parallel chord trusses are also used as pre-fabricated floor joists, beams and girders in multi-storey buildings [Fig. 2.10(a)]. Warren configuration is frequently used [Figs.
2.10(b)] in the case of parallel chord trusses. The advantage of parallel chord trusses is that they use webs of the same lengths and thus reduce fabrication costs for very long spans. Modified Warren is used with additional verticals, introduced in order to reduce the unsupported length of compression chord members. The saw tooth north light roofing systems use parallel chord lattice girders [Fig. 2.10(c)] to support the north light trusses and transfer the load to the end columns.

The economical span to depth ratio of the parallel chord trusses is in the range of 12 to 24. The total span is subdivided into a number of panels such that the individual panel lengths are appropriate (6m to 9 m) for the stringer beams, transferring the carriage way load to the nodes of the trusses and the inclination of the web members are around 45 degrees. In the case of very deep and very shallow trusses it may become necessary to use K and diamond patterns for web members to achieve appropriate inclination of the web members. [Figs. 2.10(d), 2.10(e)]
Trapezoidal trusses

In case of very long span length pitched roof, trusses having trapezoidal configuration, with depth at the ends are used [Fig. 2.11(a)]. This configuration reduces the axial forces in the chord members adjacent to the supports. The secondary bending effects in these members are also reduced. The trapezoidal configurations [Fig. 2.11(b)] having the sloping bottom chord can be economical in very long span trusses (spans > 30 m), since they tend to reduce the web member length and the chord members tend to have nearly constant forces over the span length. It has been found that bottom chord slope equal to nearly half as much as the rafter slope tends to give close to optimum design.

2.4.3 Truss members

The members of trusses are made of either rolled steel sections or built-up sections depending upon the span length, intensity of loading, etc. Rolled steel angles, tee sections, hollow circular and rectangular structural tubes are used in the case of roof trusses in industrial buildings [Fig. 2.12(a)]. In long span roof trusses and short span bridges heavier rolled steel sections, such as channels, I sections are used [Fig. 2.12(b)]. Members built-up using I sections, channels, angles and plates are used in the case of long span bridge trusses [Fig. 2.12(c)]
Accesses to surface, for inspection, cleaning and repainting during service, are important considerations in the choice of the built-up member configuration. Surfaces exposed to the environments, but not accessible for maintenance are vulnerable to severe corrosion during life, thus reducing the durability of the structure. In highly corrosive environments fully closed welded box sections, and circular hollow sections are used to reduce the maintenance cost and improve the durability of the structure.

2.4.4 Truss connections

Members of trusses can be joined by riveting, bolting or welding. Due to involved procedure and highly skilled labour requirement, riveting is not common these days. High strength friction grip (HSFG) bolting and welding have become more common. Shorter span trusses are usually fabricated in shops and can be completely welded and transported to site as one unit. Longer span trusses can be prefabricated in segments by welding in shop. These segments can be assembled by bolting or welding at site. This results in a much better quality of the fabricated structure.

![Fig. 2.12 Cross sections of truss members](image-url)

(a) Light Section
(b) Heavy Sections
(c) Built-up Sections
Truss connections form a high proportion of the total truss cost. Therefore it may not always be economical to select member sections, which are efficient but cannot be connected economically. Trusses may be single plane trusses in which the members are connected on the same side of the gusset plates or double plane trusses in which the members are connected on both sides of the gusset plates.

It may not always be possible to design connection in which the centroidal axes of the member sections are coincident [Fig. 2.13(a)]. Small eccentricities may be unavoidable and the gusset plates should be strong enough to resist or transmit forces arising in such cases without buckling (Fig. 2.13b). The bolts should also be designed to resist moments arising due to in-plane eccentricities. If out-of-plane instability is foreseen, use splice plates for continuity of out-of-plane stiffness (Fig. 2.13a).

![Fig. 2.13 Truss connections](image)

If the rafter and tie members are T sections, angle diagonals can be directly connected to the web of T by welding or bolting. Frequently, the connections between the members of the truss cannot be made directly, due to inadequate space to accommodate the joint length. In such cases, gusset plates
are used to accomplish such connections. The size, shape and the thickness of the gusset plate depend upon the size of the member being joined, number and size of bolt or length of weld required, and the force to be transmitted. The thickness of the gusset is in the range of 8 mm to 12 mm in the case of roof trusses and it can be as high as 22 mm in the case of bridge trusses. The design of gussets is usually by rule of thumb. In short span (8 – 12 m) roof trusses, the member forces are smaller, hence the thickness of gussets are lesser (6 or 8 mm) and for longer span lengths (> 30 m) the thickness of gussets are larger (12 mm). The designs of gusset connections are discussed in a chapter on connections.

2.4.5 Design of trusses

Factors that affect the design of members and the connections in trusses are discussed in this section.

Instability considerations

While trusses are stiff in their plane they are very weak out of plane. In order to stabilize the trusses against out- of- plane buckling and to carry any accidental out of plane load, as well as lateral loads such as wind/earthquake loads, the trusses are to be properly braced out -of -plane. The instability of compression members, such as compression chord, which have a long unsupported length out- of-plane of the truss, may also require lateral bracing.

Compression members of the trusses have to be checked for their buckling strength about the critical axis of the member. This buckling may be in plane or out-of-plane of the truss or about an oblique axis as in the case of single angle sections. All the members of a roof truss usually do not reach their limit
states of collapse simultaneously. Further, the connections between the members usually have certain rigidity. Depending on the restraint to the members under compression by the adjacent members and the rigidity of the joint, the effective length of the member for calculating the buckling strength may be less than the centre-to-centre length of the joints. The design codes suggest an effective length factor between 0.7 and 1.0 for the in-plane buckling of the member depending upon this restraint and 1.0 for the out-of-plane buckling.

In the case of roof trusses, a member normally under tension due to gravity loads (dead and live loads) may experience stress reversal into compression due to dead load and wind load combination. Similarly, the web members of the bridge truss may undergo stress reversal during the passage of the moving loads on the deck. Such stress reversals and the instability due to the stress reversal should be considered in design. The design standard (IS: 800) imposes restrictions on the maximum slenderness ratio, \(\frac{L}{r} \).

2.4.6 Economy of trusses

As already discussed, trusses consume a lot less material compared to beams to span the same length and transfer moderate to heavy loads. However, the labour requirement for fabrication and erection of trusses is higher and hence the relative economy is dictated by different factors. In India, these considerations are likely to favour the trusses even more because of the lower labour cost. In order to fully utilize the economy of the trusses, the designers should ascertain the following:

- Method of fabrication and erection to be followed, facility for shop fabrication available, transportation restrictions, field assembly facilities.
• Preferred practices and past experience.
• Availability of materials and sections to be used in fabrication.
• Erection technique to be followed and erection stresses.
• Method of connection preferred by the contractor and client (bolting, welding or riveting).
• Choice of as rolled or fabricated sections.
• Simple design with maximum repetition and minimum inventory of material.