Link State Routing
Link State Routing

- Discover its neighbour and learn network addresses
 - Measure cost to each of its neighbours
 - Construct a packet telling what it has learnt
 - Send packet to all other routers
 - With link state packets from all router construct shortest path to every other router
Links State Packets from Different Routers

<table>
<thead>
<tr>
<th>seqno</th>
<th>age</th>
<th>seqno</th>
<th>age</th>
<th>seqno</th>
<th>age</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td></td>
<td>b</td>
<td></td>
<td>c</td>
<td></td>
</tr>
<tr>
<td>d</td>
<td></td>
<td>e</td>
<td></td>
<td>f</td>
<td></td>
</tr>
</tbody>
</table>

| | | | | | |
|-------------------|
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |

- a sequence number: 3
- b sequence number: 2
- c sequence number: 4
- d sequence number: 3
- e sequence number: 6
- f sequence number: 4
Link State Routing

- Flags
 - Send flags
 - On which lines should the packets be sent
 - Ack flags
 - On which lines should the packets be acked
 - Seqno
 - Sequence number of packet
 - Useful to distinguish between new and old packets
 - Age
 - Remove packets that are circulating that are aged
Link State Routing

- Distribution of link state packets:
 - Periodically flood
 - dam the flood
 - seqno –
 - new forward
 - old discard
 - lower discard
- What if seqno corrupted
 - Packet discarded after it has aged
 - decrementing age by route
 - Decrement age also on time
- All link state packet acked echo reply/ echo request with timestamp
Link state packet information (router b)

<table>
<thead>
<tr>
<th>src</th>
<th>seqno</th>
<th>age</th>
<th>ack</th>
<th>send</th>
<th>Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>21</td>
<td>60</td>
<td>100</td>
<td>011</td>
<td></td>
</tr>
<tr>
<td>f</td>
<td>21</td>
<td>60</td>
<td>001</td>
<td>110</td>
<td></td>
</tr>
<tr>
<td>e</td>
<td>21</td>
<td>51</td>
<td>101</td>
<td>010</td>
<td></td>
</tr>
<tr>
<td>c</td>
<td>20</td>
<td>60</td>
<td>010</td>
<td>101</td>
<td></td>
</tr>
<tr>
<td>d</td>
<td>21</td>
<td>59</td>
<td>011</td>
<td>100</td>
<td></td>
</tr>
</tbody>
</table>

Once all link state packets available – compute SSSP on all possible destination.
Distributed Routing

• Too many routers:
 – Hierarchical routing
 – Backbone routers
 – Regional routers (Points of Presence)
 – Subnetting
Distributed Routing

- **Flooding (Broadcast routing)**
 - Send distinct packet to every host (wasteful of network bw)
 - Every incoming packet sent on every outgoing line except the line on which it arrived.
 - Generates large number of packets
 - Use hop count
 - Seqno to prevent reflooding
 - Selective flooding
 - East west need not be sent south north
 - Flooding in military
 - When master dies
Hierarchical routing
Full table 1a

<table>
<thead>
<tr>
<th>Line</th>
<th>Hop</th>
</tr>
</thead>
<tbody>
<tr>
<td>1a</td>
<td>0</td>
</tr>
<tr>
<td>1b</td>
<td>1b</td>
</tr>
<tr>
<td>1c</td>
<td>1c</td>
</tr>
<tr>
<td>5a</td>
<td>5a</td>
</tr>
<tr>
<td>5b</td>
<td>5b</td>
</tr>
</tbody>
</table>

Hierarchical routing table 1a

<table>
<thead>
<tr>
<th>Line</th>
<th>Hop</th>
</tr>
</thead>
<tbody>
<tr>
<td>1a</td>
<td>-</td>
</tr>
<tr>
<td>1b</td>
<td>1b</td>
</tr>
<tr>
<td>1c</td>
<td>1a</td>
</tr>
<tr>
<td>2</td>
<td>1b</td>
</tr>
<tr>
<td>3</td>
<td>1c</td>
</tr>
<tr>
<td>4</td>
<td>1c</td>
</tr>
<tr>
<td>5</td>
<td>1c</td>
</tr>
</tbody>
</table>

Path 1a to 3a via 1c = 6

1a to 3a via 2a = 5

Therefore not always the best.
Distributed Routing (Miscellaneous)

• Multi destination routing:
 – Each packet contains a list of destinations
 – Router check destinations for choosing output lines
 – Copy of packet made and forwarded only line where destination exists
 – Partitioning of destination into the output lines
 – After sufficient number of hops – each packet only one destination
Distributed Routing (Miscellaneous)

- **Multidestination Routing**
 - Sending a message to a group of hosts
 - Routers must know about hosts that belong to the same group
 - Prune spanning tree to include only the edges of hosts in the group
 - Forward packets in that group
 - Link state / distance vector
 - Node not in group tells host not to send
 - n groups – m members
Distributed Routing (Miscellaneous)

• Sink tree router / spanning tree
 – Each router copies packets on to output lines on spanning tree except line it arrived.

• Reverse Path Forwarding:
 – Broadcast packet at router forwarded on all lines other line it arrived
 – Provided packet arrived on preferred
 – Otherwise discarded
 – No need to know spanning tree
Distributed Routing (Miscellaneous)

- When a router receives a multicast packet
 - Examines spanning tree
 - Prune tree to lead to hosts only on the group
 - Forward packets only on pruned tree

- Link state pruning:
 - Each router aware of the complete subnet topology
 - Prune spanning tree
 - Start from end of each path and work toward the root
 - Distance vector approach
 - Reverse path forwarding
 - Send message back to host to prune its tree
Distributed Routing (Miscellaneous)

• Core base tree
 – Single spanning tree / group
 – Root near middle of the group
 – Host sends multicast packet send to the root
 – Multicast along spanning tree