Routing Algorithms

• **Adaptive algorithm:**
 – Reflect change in topology
 – Get information locally from adjacent routers

• **Non Adaptive Algorithm**
 – Static routers
 – Downloaded to routers when network is booted

• **Routing:**

• **Principle of Optimality:**
 – If router I on optimal path from router I to K then optimal path from J to K also on same route!
Routing Algorithms (Static)

• Set of all optimal routes from: Source to a given destination
 – A sink tree!
• Goal of routing algorithm find sink trees that are there!
• Shortest Path Routing:
 – Dijkstra
 – Uses topology
 – Greedy approach
 – Possible shorter path of equal length – need not be unique
Static Routing Algorithms

- **Shortest path routing**
 - To send a packet from one node to another find the shortest path between the pair of nodes

- **Multipath Routing**
 - Multiple paths from Node a to node b.
 - Randomly choose one of the paths
Dijkstra (example)

Shortest path from A→D is via b and c
Multipath Routing

- Forward traffic based on – a random number
- Example: Path from a to d
 - via b: 0.0 - 0.65
 - via f: 0.65 - 1.0
- Packet for d from a:
 - Generate a random number r:
 - If $0 < r \leq 0.65$, choose b
 - otherwise choose f
Multipath Routing

- Advantages:
 - Reliability
 - disjoint entries
 - multiple routes possible
Static Routing

• Disadvantages:
 – SSSP and Multipath:
 • Require complete knowledge of Network topology to make a good decision.

• Hot potato routing
 – Forward on to shortest Queue (defined by hopcount)
 – Use hot potato with static routing
 – rank = Shortest Queue + shortest path
Distance Vector Routing

- Distance Vector Routing:
- (Distributed Bellman Ford, Fulkerson)
 - Each router maintain a table:
 - destination, estimated cost, link, hop count, time delay in ms, queue length, ...
 - Updated by exchanging information between router - ICMP
Dynamic Routing

• Distributed Routing:
 – Dynamic routing
 – Changing topology of the network
 – Need to recompute route continuously
<table>
<thead>
<tr>
<th></th>
<th>Router a</th>
<th>Via i</th>
<th>Router i</th>
<th>Via j</th>
<th>Router b</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>0</td>
<td>a</td>
<td>24</td>
<td>a</td>
<td>8</td>
</tr>
<tr>
<td>b</td>
<td>12</td>
<td>b</td>
<td>36</td>
<td>b</td>
<td></td>
</tr>
<tr>
<td>c</td>
<td>25</td>
<td>c</td>
<td>18</td>
<td>c</td>
<td></td>
</tr>
<tr>
<td>d</td>
<td>40</td>
<td>d</td>
<td>27</td>
<td>d</td>
<td></td>
</tr>
<tr>
<td>e</td>
<td>14</td>
<td>e</td>
<td>7</td>
<td>e</td>
<td></td>
</tr>
<tr>
<td>f</td>
<td>23</td>
<td>f</td>
<td>20</td>
<td>f</td>
<td></td>
</tr>
<tr>
<td>g</td>
<td>18</td>
<td>g</td>
<td>31</td>
<td>g</td>
<td>?</td>
</tr>
<tr>
<td>h</td>
<td></td>
<td>h</td>
<td></td>
<td>h</td>
<td>12</td>
</tr>
<tr>
<td>i</td>
<td></td>
<td>i</td>
<td></td>
<td>i</td>
<td>10</td>
</tr>
<tr>
<td>j</td>
<td></td>
<td>j</td>
<td></td>
<td>j</td>
<td></td>
</tr>
<tr>
<td>k</td>
<td></td>
<td>k</td>
<td></td>
<td>k</td>
<td>13</td>
</tr>
<tr>
<td>l</td>
<td></td>
<td>l</td>
<td></td>
<td>l</td>
<td></td>
</tr>
</tbody>
</table>
Distance Vector Routing

• Compute route from b to g
• via a – 8 + 18
• via i – 10 +31
• so update route to g to 26
Distance Vector Routing

- Example: b wants to update its information
Issues: Count to infinity

Initially

<table>
<thead>
<tr>
<th></th>
<th>b - x</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>c - x</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>d - x</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>e - x</td>
<td>4</td>
<td></td>
</tr>
</tbody>
</table>

Now x goes down

<table>
<thead>
<tr>
<th></th>
<th>b</th>
<th>c</th>
<th>d</th>
<th>e</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>3</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>5</td>
<td>4</td>
<td>5</td>
<td>4</td>
</tr>
<tr>
<td>5</td>
<td>6</td>
<td>5</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>7</td>
<td>6</td>
<td>7</td>
<td>6</td>
</tr>
<tr>
<td>7</td>
<td>8</td>
<td>7</td>
<td>8</td>
<td></td>
</tr>
</tbody>
</table>

Count to infinity ∞

Number of exchanges depends on definition of infinity