Module 4 : Propagation Delays in MOS
Lecture 15 : CMOS Inverter Characteristics

Objectives

In this lecture you will learn the following
- CMOS Inverter Characteristics
- Noise Margins
- Regions of operation
- Beta-n by Beta-p ratio

15. CMOS Inverter Characteristics

The complementary CMOS inverter is realized by the series connection of a p- and n-device as in fig 15.11.

Fig 15.11: CMOS Inverter

Fig 15.12: I-V characteristics of PMOS & NMOS
Inverter characteristics:
In the below graphical representation (fig.2). The I-V characteristics of the p-device is reflected about x-axis. This step is followed by taking the absolute values of the p-device, Vds and superimposing the two characteristics. Solving Vinn and Vinp and Idsn=Idsp gives the desired transfer characteristics of a CMOS inverter as in fig3.

15.2 Noise Margins

Noise margin is a parameter closely related to the input-output voltage characteristics. This parameter allows us to determine the allowable noise voltage on the input of a gate so that the output will not be affected. The specification most commonly used to specify noise margin (or noise immunity) is in terms of two parameters- The LOW noise margin, NML, and the HIGH noise margin, NMH. With reference to Fig 4, NML is defined as the difference in magnitude between the maximum LOW output voltage of the driving gate and the maximum input LOW voltage recognized by the driven gate. Thus,

\[NML = |V_{IL_{max}} - V_{O_{L_{max}}}| \]

The value of NMH is difference in magnitude between the minimum HIGH output voltage of the driving gate and the minimum input HIGH voltage recognized by the receiving gate. Thus,

\[NMH = |V_{OH_{min}} - V_{I_{H_{min}}}| \]

Where,

- VIHmin = minimum HIGH input voltage.
- VILmax = maximum LOW input voltage.
- VOHmin = minimum HIGH output voltage.
- VOLmax = maximum LOW output voltage.
15.3: Regions of Operation

The operation of CMOS inverter can be divided into five regions. The behavior of n- and p-devices in each of region may be found using

<table>
<thead>
<tr>
<th>REGION</th>
<th>CONDITION</th>
<th>p-device</th>
<th>n-device</th>
<th>OUTPUT</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>$0 \leq V_{in} < V_{tn}$</td>
<td>Nonsaturated</td>
<td>Cutoff</td>
<td>$V_{out} = V_{DD}$</td>
</tr>
<tr>
<td>B</td>
<td>$V_{tn} \leq V_{in} < V_{DD}/2$</td>
<td>Nonsaturated</td>
<td>Saturated</td>
<td>Eq. 2</td>
</tr>
<tr>
<td>C</td>
<td>$V_{in} = V_{DD}/2$</td>
<td>Saturated</td>
<td>Saturated</td>
<td>$V_{out} \neq f(V_{in})$</td>
</tr>
<tr>
<td>D</td>
<td>$V_{DD}/2 < V_{in} \leq V_{DD} + V_{tp}$</td>
<td>Saturated</td>
<td>Non-saturated</td>
<td>Eq. 5</td>
</tr>
<tr>
<td>E</td>
<td>$V_{in} \geq V_{DD} + V_{tp}$</td>
<td>Cutoff</td>
<td>Non-saturated</td>
<td>$V_{out} = V_{SS}$</td>
</tr>
</tbody>
</table>

We will describe about each regions in details-

Region A: This region is defined by $0 \leq \text{Vin} < \text{Vtn}$ in which the n-device is cut off ($I_{dsn} = 0$), and the p-device is in the linear region. Since $I_{dsn} = -I_{Idsp}$, the drain-to-source current I_{ds} for the p-device is also zero. But for $V_{dsp} = V_{out} - V_{DD}$, with $V_{dsp} = 0$, the output voltage is $V_{out} = V_{DD}$.

Region B: This region is characterized by $V_{tn} \leq \text{Vin} < V_{DD}/2$ in which the p-device is in its non-saturated region ($V_{ds} \neq 0$) while the n-device is in saturation. The equivalent circuit for the inverter in this region can be represented by a resistor for the p-transistor and a current source for the n-transistor as shown in fig. 6. The saturation current I_{ds} for the n-device is obtained by setting $V_{gs} = \text{Vin}$. This results in $I_{dsn} = \beta_{n} [V_{in} - V_{tn}]^2 / 2$ where $\beta_{n} = \frac{\mu_{n} \varepsilon \text{Wn}}{t_{ox} \text{Ln}}$ and V_{tn} = threshold voltage of n-device, μ_{n} = mobility of electrons, Wn = channel width of n-device & Ln = channel length of n-device.

The current for the p-device can be obtained by noting that $V_{gs} = (V_{in} - V_{DD})$ and $V_{ds} = (V_{out} - V_{DD})$. And therefore, $I_{dsp} = \beta_{p} [V_{in} - V_{DD} - V_{tp}](V_{out} - V_{DD})^2 / 2$ where $\beta_{p} = \frac{\mu_{p} \varepsilon \text{Wp}}{t_{ox} \text{Lp}}$ and V_{tp} = threshold voltage of p-device, μ_{p} = mobility of electrons, Wp = channel width of p-device and Lp = channel length of p-device. The output voltage V_{out} can be expressed as-
Region C: In this region both the n- and p-devices are in saturation. This is represented by fig 7 which shows two current sources in series.

The saturation currents for the two devices are given by.

\[I_{ds_p} = -\beta_p (V_{in} \cdot V_{DD} - V_{tp})^2 / 2 \text{ with } I_{ds_n} = -I_{ds_p} \]

This yields,

\[V_{th} = \frac{V_{DD} + V_{TP} + V_{TN} \sqrt{\frac{\beta_n}{\beta_p}}}{1 + \sqrt{\frac{\beta_n}{\beta_p}}} \]

By setting, \(\beta_p = \beta_n \) and \(V_{th} = -V_{tp} \) we obtain \(V_{th} = V_{DD}/2 \).
Which implies that region C exists only for one value of V_{in}. We have assumed that a MOS device in saturation behaves like an ideal current soured with drain-to-source current being independent of V_{ds}. In reality, as V_{ds} increases, I_{ds} also increases slightly; thus region C has a finite slope. The significant factor to be noted is that in region C, we have two current sources in series, which is an "unstable" condition. Thus a small input voltage as a large effect at the output. This makes the output transition very steep, which contrasts with the equivalent nMOS inverter characteristics. The above expression of V_{th} is particularly useful since it provides the basis for defining the gate threshold V_{inv} which corresponds to the state where $V_{out}=V_{in}$. This region also defines the "gain" of the CMOS inverter when used as a small signal amplifier.

Region D:

![Fig 15.33: Equivalent circuit of MOSFET in region D](image)

This region is described by $V_{DD}/2 < V_{in} =< V_{DD} + V_{tp}$. The p-device is in saturation while the n-device is operation in its nonsaturated region. This condition is represented by the equivalent circuit shown in fig 15.33. The two currents may be written as

$$I_{dsp} = \beta_p (V_{in} - V_{DD} - V_{tp})^2 / 2 \quad & \quad I_{dsn} = \beta_n (V_{in} - V_{tn})V_{out} - V_{out}^2 / 2$$

with $I_{dsn} = -I_{dsp}$.

The output voltage becomes

$$V_{out} = V_{in} - V_{tn} - (V_{in} - V_{tn})^2 \frac{\beta_p}{\beta_n} (V_{in} - V_{DD} - V_{tn})^2 V^{1/2}$$

Region E: This region is defined by the input condition $V_{in} >= V_{DD} - V_{tp}$, in which the p-device is cut off ($I_{dsp} = 0$), and the n-device is in the linear mode. Here, $V_{gsp} = V_{in} - V_{DD}$

Which is more positive than V_{tp}. The output in this region is $V_{out} = 0$. From the transfer curve, it may be seen that the transition between the two states is very step. This characteristic is very desirable because the noise immunity is maximized.
15.4 β_n/β_p ratio:

The gate-threshold voltage, V_{in}, where $V_{\text{in}} = V_{\text{out}}$ is dependent on β_n/β_p. Thus, for given process, if we want to change β_n/β_p we need to change the channel dimensions, i.e., channel-length L and channel-width W. Therefore it can be seen that as the ratio β_n/β_p is decreased, the transition region shifts from left to right; however, the output voltage transition remains sharp.

Recap

In this lecture you have learnt the following
- CMOS Inverter Characteristics
- Noise Margins
- Regions of operation
- Beta-n by Beta-p ratio

Congratulations, you have finished Lecture 15.