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Numerical solution of first order ordinary differential equations 
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Solution of first order ordinary differential equations 

Consider y(t)  to be a function of a variable t. A first order Ordinary differential 

equation is an equation relating y, t and its first order derivatives. The most general 

form is : 

F(t,y(t),y (t)) 0     

The variable y is known as a dependent variable and t is independent variable. The 

equation is of first order as it is the order of highest derivative present in the equation. 

Sometimes it is possible to rewrite the equation in the form  

 y (t) f(t,y(t)) (1.1)    

y g(t)  is a solution of the first order differential equation (1.1) means  

i) y(t) is differentiable 

ii) Substitution of y(t) and y (t)  in (1.1) satisfies the differential equation 

identically  

The differential equations are commonly obtained as mathematical representations of 

many real world problems. Then the solution of the underlying problem lies in the 

solution of differential equation. Finding solution of the differential equation is then 

critical to that real world problem.  

Examples of first order differential equations are: 

 
y 2y 0

y siny exp(t)

  
  

 

The first of these equations represents the exponential decay of radioactive material 

where y represent the amount of material at any given time and k=2 is the rate of decay.  

It may be noted that y(t) c exp( 2t)  is the solution of differential equation as it 

identically satisfies the given differential equation for arbitrarily chosen constant c. This 



means that the differential equation has infinitely many solutions for different choices of 

c. In other words, the real world problem has infinitely many solutions which we know is 

not true. In fact, an initial condition should be specified for finding the unique solution of 

the problem: 

y(0) A  

That is, the amount of radioactive material present at time t=0 is A. When this initial 

condition is imposed on the solution, the constant c is evaluated as A and the solution 

y(t) A exp( 2t)  is now unique. The expression can now be used for computing the 

amount of material at any given time. 

The solution with arbitrary constant is known as the general solution of the differential 

equation. The solution obtained using the initial condition is a particular solution.  

A first order Initial Value Problem (IVP) is defined as a first order differential equation 

together with specified initial condition at t=t0: 

 

There exist several methods for finding solutions of differential equations. However, all 

differential equations are not solvable. The following well known theorem from theory of 

differential equations establishes the existence and uniqueness of solution of the IVP: 

Let f(t,y(t)) be continuous in a domain D={ (t,y(t)): t0≤t≤b, c≤y≤d }  R2. If f satisfies 

Lipschitz condition on the Variable y and (t0,y0) in D, then IVP has a unique solution 

y=y(t) on the some interval t0 ≤ t ≤ t0+δ. 

{The function f satisfies Lipschitz condition means that there exists a positive constant L 

such that   f(t,y) f(t,w) L y w } 

The theorem gives conditions on function f(t, y) for existence and uniqueness of the 

solution. But the solution has to be obtained by available methods. It may not be 

possible to obtain analytical solution (in closed form) of a given first order differential 

equation by known methods even when the above theorem guarantees its existence. 

0 0 0y f(t,y); t t b with y(t ) y (1.2)    



Sometimes it is very difficult to obtain the solution. In such cases, the approximate 

solution of given differential equation can be obtained.  

Approximate Solution  

The classical methods for approximate solution of an IVP are: 

i) Picard Iteration method  

ii) Taylor Series method 

Picard Iteration Method: 

Picard method is an iterative method. An iterative method gives a sequence of 

approximations y1(x), y2(x), …,yk(x),…to the solution of differential equations such that 

the nth approximation is obtained from one or more prevoius approximations.   

The integration of differential equation (1.2) yields 

0

0

t

t

y(t) y f(x,y(x))dx    

Note that the exact solution of IVP is obtained for t=t0 

For approximate solution, the exact solution y(x) is approximated by y0 in the integrand 

to get 

1 0 0

0

t

t

y(t) y (x) y f(x,y )dx     

The approximation can be improved as  

2 0 1

0

t

t

y (x) y f(x,y )dx    

A sequence of approximations y1(x), y2(x), …,yk(x),…can be obtained as 

   k 1 0 k

0

t

t

y (x) y f(x,y )dx ; k 0,1,2,...

     

(1.3) 

From the theory of differential equations, it can be proved that the above sequence of 

approximations converges to the exact solution of IVP. 

 



 

 

 

Example 1.1: Obtain the approximate solution of IVP using Picard method. Obtain its 

exact solution also 

 y 1 ty; y(0) 1     

Solution: Given that y0=1. Using (1.3) gives 

k 1 k k k

k 1 k k

t

0
t t

0 0

y (t) 1 f(x,y )dx f(x,y ) 1 xy

y (t) 1 (1 xy )dx 1 t (xy )dx





   

     



   

Simplification yields the sequence of approximations as 

 

2
1y (t) 1 t t / 2    

t
2 2 3 4

2

0

y (t) 1 t x(1 x x / 2)dx 1 t t / 2 t / 3 t / 8           

t
2 3 4

3

0

2 3 4 5 6

y (t) 1 t x(1 x x / 2 x / 3 x / 8)dx

1 t t / 2 t / 3 t / 8 t /15 t / 48

      

      

  and so on. 

The differential equation in example 1.1 is a linear first order equation. Its exact solution 

can be obtained as 

t
2 2

0

y(t) exp(x / 2)[1 exp( x )dx]    

The closed form solution of differential equation in this case is possible. But the 

expression involving an integral is difficult to analyze. The sequence of polynomials as 

obtained by Picard method gives only approximate solution, but for many practical 

problems this form of solution is preferred. 

 

 

 



Taylor Series method: 

The IVP gives the solution y0 at initial point t=t0. for given step size h, the solution at 

t=t0+h can be computed from Taylor series as 

2 3

1 0 0 0 0 0

h h
y(t ) y(t h) y(t ) hy (t ) y (t ) y (t ) ... (1.4)

2 6
        

 

From the differential equation, it is observed that  

0 0 0 0 0y (t ) f(t ,y(t )) f(t ,y )    

Repeated differentiation gives 0 0y (t ),y (t ),...   as  

0

2 2
2

0 2

0

0

t t

t t

f f
yy (t )

t y

f f f
y (t ) and so on2 y ( y )

t y yt





       

           

 

Substituting these derivatives and truncating the series (1.4) gives the approximate 

solution at t1. 

Example 1.2: Obtain the approximate solution y(t) of IVP using Taylor series method. 

Obtain approximate solution at t= 0.1 correct to 4 places of decimal. 

 y 1 ty; y(0) 1     

Solution: Given that y 1 ty f(t,y)     

Repeated differentiations yield 

iv

y y ty

y 2y ty

y (2y 1)y xy y and so on

  
   

     

 

Or ivy(0) 1, y (0) 1, y (0) 1, y (0) 2, y (0) 3,...        

Substitution in (1.4) with t0=0 and h=t gives  

2 3 4y(t) y(0 t) 1 t t / 2 t / 3 t / 8 ...         

Taking t=0.1 and substitution in the above series gives 

y(0.1) 1 0.1 0.01/ 2 0.001/ 3 0.0001/ 8 ....       

Or y(0.1) 1 0.1 0.005 0.00033 0.0000125 ..       



It may be noted that fifth term and subsequent terms are smaller than the accuracy 

requirement, the Taylor series can be truncated beyond fourth term. Accordingly 

y(0.1)=1.1.53.  

 

Observe that the Picard method involves integration while Taylor series method 

involves differentiation of the function f. Depending on the ease of operation, one can 

select the appropriate method for finding the approximate solution. The number of 

iterations in Picard method depends upon the accuracy requirement. The step size h 

can be chosen sufficiently small to meet the accuracy requirement in case of Taylor 

series method. For fixed h, more terms have to be included in the solution when more 

accuracy is desired.  

In the category of methods that include Picard method and Taylor series method, the 

approximate solution is given in the form of a mathematical expression. 

 

 

 

 

 

 

 

 

 

 

 

 

 



 


