Chapter 7
Characteristic functions

Lectures 31 - 33
In this chapter, we introduce the notion of characteristic function of a random variable and study its properties. Characteristic function serves as an important tool for analyzing random phenomenon.

Definition 7.1 (Characteristic functions) The characteristic function of a random variable X is defined as

$$\Phi_X(t) = E e^{itX}, \quad t \in \mathbb{R}. $$

(where $Ee^{itX} = E \cos tX + iE \sin tX$)

Example 7.0.43 Let $X \sim \text{Bernoulli}(p)$. Then

$$\phi_X(t) = (1 - p) + pe^{it}.$$

Example 7.0.44 Let $X \sim \text{exponential}(\lambda)$. Then

$$\Phi_X(t) = E e^{itX} = \lambda \int_0^\infty e^{itx} e^{-\lambda x} \, dx$$

$$= \lambda \left(\int_0^\infty \cos txe^{-\lambda x} \, dx \right)$$

$$= i \lambda \left(\int_0^\infty \sin txe^{-\lambda x} \, dx \right)$$

$$= \lambda \left(\frac{\lambda^2 + t^2}{\lambda^2 + t^2} \right)$$

$$= \frac{\lambda (\lambda + it)}{\lambda^2 + t^2}, \quad t \in \mathbb{R}.$$

Theorem 7.0.34 For any random variable X, its characteristic function $\phi_X(\cdot)$ is uniformly continuous on \mathbb{R} and satisfies

(i) $\Phi_X(0) = 1$

(ii) $|\Phi_X(t)| \leq 1$

(iii) $\Phi_X(-t) = \overline{\Phi_X(t)}$, where for z a complex number, \overline{z} denote the conjugate.

Proof: We prove (iii), (i) and (ii) are exercises.

$$\Phi_X(-t) = E e^{-itX} = E \cos tX - iE \sin tX$$

$$= \overline{E \cos tX + iE \sin tX}$$

$$= \overline{\Phi_X(t)}.$$

Now we show that Φ_X is uniformly continuous. Consider
\[|\Phi_X(t+h) - \Phi_X(t)| = |E(e^{it(t+h)}X - e^{itX})|, \]
\[\leq E|e^{ithX} - 1| \]
\[= E\sqrt{2(1 - \cos(hX))} \]
\[= 2E|\sin\left(\frac{hX}{2}\right)| \]

Using Dominated Convergence theorem, \(\Phi_X(t+h) \rightarrow \Phi_X(t) \) uniformly in \(t \) as \(h \rightarrow 0 \). This imply that \(\Phi_X \) is uniformly continuous.

Theorem 7.0.35 If the random variable \(X \) has finite moments upto order \(n \). Then \(\Phi \) has continuous derivatives upto order \(n \). More over
\[i^k E X^k = \Phi_X^{(k)}(0), \quad k = 1, 2, \ldots, n. \]

Proof. Consider
\[\Phi_X(t+h) - \Phi_X(t) = E\left[e^{itX}(e^{ihX} - 1)\right] \]

since \(|e^{ithX} - 1| \leq |hx| \), we get
\[E\left[|e^{itX}(e^{ihX} - 1)|\right] \leq E|X| < \infty. \]

Hence by Dominated Convergence theorem
\[\lim_{h \rightarrow 0} E\left[\frac{e^{itX}(e^{ihX} - 1)}{h}\right] = E[iXe^{itX}]. \]

Therefore
\[\Phi_X'(t) = E[iXe^{itX}]. \]

Put \(t = 0 \), we get
\[\Phi_X^{(1)}(0) = iEX. \]

For higher order derivatives, repeat the above arguments.

Theorem 7.0.36 (Inversion theorem) Let \(X \) be a random variable with distribution function \(F \) and characteristic function \(\phi_X(\cdot) \). Then
\[F(b) - F(a) = \frac{1}{2\pi} \int_{-\infty}^{\infty} \frac{e^{-ita} - e^{-itb}}{it} \Phi_X(t) dt, \]

whenever \(a, b \) are points of continuity of \(F \).

Proof. Consider
\[
\frac{1}{2\pi} \int_{-\infty}^{\infty} \frac{e^{-ita} - e^{-itb}}{it} \Phi_X(t) dt = \frac{1}{2\pi} \int_{-\infty}^{\infty} \frac{e^{-ita} - e^{-itb}}{it} E e^{itX} dt \\
= \frac{1}{2\pi} E \int_{-\infty}^{\infty} \frac{e^{-ita} - e^{-itb}}{it} e^{itX} dt = E \int_{-\infty}^{\infty} \frac{e^{it(X-a)} - e^{it(X-b)}}{2\pi it} dt. \tag{7.0.1}
\]

The second equality follows from the change of order of integration. Now

\[
\int_{-\infty}^{0} \frac{e^{it(X-a)} - e^{it(X-b)}}{2\pi it} dt = \int_{0}^{\infty} \frac{e^{-it(X-a)} - e^{-it(X-b)}}{2\pi it} dt \tag{7.0.2}
\]

Hence, using \(2i\sin \theta = e^{i\theta} - e^{-i\theta}\), we have

\[
\int_{-\infty}^{\infty} \frac{e^{it(X-a)} - e^{it(X-b)}}{2\pi it} dt = \frac{1}{\pi} \int_{0}^{\infty} \frac{\sin t(X-a)}{t} dt - \frac{1}{\pi} \int_{0}^{\infty} \frac{\sin t(X-b)}{t} dt \tag{7.0.3}
\]

Using

\[
\int_{0}^{\infty} \frac{\sin ax}{x} dx = \frac{\pi}{2} \text{sgn}(a)
\]

we get

\[
\frac{1}{\pi} \int_{0}^{\infty} \frac{\sin t(X-a)}{t} dt = \begin{cases}
\frac{1}{2} & \text{if } X > a \\
0 & \text{if } X = a \\
-\frac{1}{2} & \text{if } X < a,
\end{cases} \tag{7.0.4}
\]

where

\[
\text{sgn}(\alpha) = \begin{cases}
-1 & \text{if } \alpha < 0 \\
0 & \text{if } \alpha = 0 \\
1 & \text{if } \alpha > 0.
\end{cases}
\]

Similarly, the other integral. Combining (7.0.1), (7.0.3) and (7.0.4), we complete the proof.

Theorem 7.0.37 (Uniqueness Theorem)

Let \(X_1, X_2\) be two random variables such that \(\Phi_{X_1} \equiv \Phi_{X_2}\). Then \(X_1, X_2\) have the same distribution.

Proof: Using Inversion theorem, we have

\[
F_1(b) - F_1(a) = F_2(b) - F_2(a)
\]

for all \(a, b \in \mathbb{R}\) such that \(F_1, F_2\) are continuous at \(a\) and \(b\).

Now let \(a \to -\infty\), we have

\[
F_1(b) = F_2(b)
\]

for all \(b\) at which \(F_1\) and \(F_2\) are continuous.

Therefore

\[
F_1 \equiv F_2 \text{ (Exercise)}
\]
Now we state the following theorem whose proof is beyond the scope of this course.

Theorem 7.0.38 (Continuity Theorem) Let \(X_n, X\) be random variables on \((\Omega, \mathcal{F}, P)\) such that,

\[
\lim_{n \to \infty} \Phi_{X_n}(t) = \Phi_X(t), \quad t \in \mathbb{R}.
\]

Then \(F_{X_n}(x) \rightarrow F_X(x)\) for all \(x \in \mathbb{R}\) such that \(F\) is continuous at \(x\).

Proof:
A detailed proof is beyond the scope of this course but I will give an idea of the proof. Choose a standard normal random variable \(Y\) which is independent of \(X\) and \(X_n, n \geq 1\). For \(x\) such that \(P\{X = x\}, \quad \epsilon > 0\) and \(y < x\) such that \(P\{X_n = y\} = P\{X = y\} = 0, n \geq 1\), using inversion theorem we have

\[
P\{y \leq X_n + \epsilon, Y \leq x\} = \frac{1}{2\pi} \int_{-\infty}^{+\infty} \frac{e^{-it\epsilon} - e^{-it\epsilon}}{it} \Phi_{X_n}(t)e^{-t^2/2} dt
\]
and

\[
P\{y \leq X + \epsilon, Y \leq x\} = \frac{1}{2\pi} \int_{-\infty}^{+\infty} \frac{e^{-it\epsilon} - e^{-it\epsilon}}{it} \Phi_X(t)e^{-t^2/2} dt
\]

Now by letting first \(n \to \infty\) and \(y \to \infty\) then \(\epsilon \to 0\) and finally, we get

\[
\lim_{n \to \infty} P\{X_n \leq x\} = P\{X \leq x\}
\]

Here note that above mentioned limits need justification.