Chapter 3
Conditional Probability and Independence

Lectures 8 -12
In this chapter, we introduce the concepts of conditional probability and independence.

Suppose we know that an event \(A \) already occurred. Then a natural question asked is “What is the effect of this on the probabilities of other events?” This leads to the notion of conditional probability.

Definition 3.1 Let \((\Omega, \mathcal{F}, P)\) be a probability space and \(A \in \mathcal{F} \) be such that \(P(A) > 0 \). The conditional probability of an event \(B \in \mathcal{F} \) given \(A \) denoted by \(P(B | A) \) is defined as

\[
P(B | A) = \frac{P(AB)}{P(A)}.
\]

Define

\[
\mathcal{F}_A = \{BA \mid B \in \mathcal{F}\}.
\]

Then \(\mathcal{F}_A \) is a \(\sigma \)-field of subsets of \(A \) (see Exercise 3.2).

A collection \(\{A_1, A_2, \ldots, A_N\} \) of events is said to be a *partition of* \(\Omega \), if

(i) \(A_i \)'s are pairwise disjoint

(ii) \(\bigcup_{i=1}^N A_i = \Omega \).

Here \(N \) may be \(\infty \). If \(N < \infty \), then partition is said to be finite partition and if \(N = \infty \), it is called a countable partition.

Theorem 3.0.8 Define \(P_A \) on \(\mathcal{F}_A \) as follows.

\[
P_A(B) = P(B | A), \ B \in \mathcal{F}_A.
\]

Then \((A, \mathcal{F}_A, P_A) \) is a probability space.

Proof is an exercise, see Exercise 3.3.

Theorem 3.0.9 (Law of total probability-discrete form) Let \((\Omega, \mathcal{F}, P)\) be a probability space and \(\{A_1, A_2, \ldots, A_n\} \subseteq \mathcal{F} \) be a partition of \(\Omega \) such that \(P(A_i) > 0 \) for all \(i \). Then for \(B \in \mathcal{F} \),

\[
P(B) = \sum_{i=1}^n P(B | A_i) P(A_i)
\]
Proof.

\[
\sum_{i=1}^{n} P(B|A_i)P(A_i) = \sum_{i=1}^{n} \frac{P(BA_i)}{P(A_i)}P(A_i) \\
= \sum_{i=1}^{n} P(B|A_i) = P(B(\cup_{i=1}^{n} A_i)) = P(B)
\]

Theorem 3.0.10 (Bayes Theorem) Let \((\Omega, \mathcal{F}, P)\) be a probability space and \(A, B \in \mathcal{F}\) such that \(P(A), P(B) > 0 \) and \(P(A) < 1\). Then

\[
P(A|B) = \frac{P(B|A)P(A)}{P(B|A) + P(B|A^c)}.
\]

Proof.

\[
P(A|B) = \frac{P(BA)P(A)}{P(A)P(B)} = \frac{P(B|A)P(A)}{P(B)}
\]

Now use Law of total probability to complete the proof.

Definition 3.2 (Independence) Two events \(A, B\) are said to be independent if

\[P(AB) = P(A)P(B),\]

Remark 3.0.3 If \(P(A) > 0\), then \(A\) and \(B\) are independent iff \(P(B|A) = P(A)\). This confirms the intuition behind the notion of independence, "the occurrence one event doesn't have any effect on the occurrence of the other".

Example 3.0.17 Define the probability space \((\Omega, \mathcal{F}, P)\) as follows.

\[
\Omega = \{HH, HT, TH, TT\}, \mathcal{F} = \mathcal{P}(\Omega)
\]

and

\[P(\{\omega\}) = \frac{1}{4}, \omega \in \Omega.\]

Consider the events \(A = \{HH, HT\}, B = \{HH, TH\}\) and \(C = \{HT, TT\}\). Then \(A\) and \(B\) are independent and \(B\) and \(C\) are dependent.

Example 3.0.18 Consider the probability space defined by

\[
\Omega = (0, 1], \mathcal{F} = B(0, 1]
\]
and P given by (1.0.6). Consider the events $A = (0, \frac{1}{2}]$, $B = [\frac{1}{4}, \frac{3}{4}]$, $C = [\frac{1}{4}, 1]$. Then A, B are independent and A, C are dependent.

The notion of independence defined above can be extended to independence of three or more events in the following manner.

Definition 3.3 (Independence of three events). The events A, B, C are independent (mutually) if

(i) A, B; B, C and C, A are independent and

(ii) $P(ABC) = P(A)P(B)P(C)$.

If the events A, B, C satisfies only (i), then A, B, C are said to be pairwise independent.

Example 3.0.19 Define $\Omega = \{1, 2, 3, 4\}$, $\mathcal{F} = \mathcal{P}(\Omega)$ and

$$P(\{i\}) = \frac{1}{4}, \ i = 1, 2, 3, 4.$$

Consider the events $A = \{1, 2\}$, $B = \{1, 3\}$, $C = \{1, 4\}$. Then A, B, C are pairwise independent but not independent.

Example 3.0.20 Define (Ω, \mathcal{F}, P) as follows. $\Omega = \{1, 2, 3, 4, 5, 6, 7, 8\}$, $\mathcal{F} = \mathcal{P}(\Omega)$ and

$$P(\{i\}) = \frac{1}{8}, \ i = 1, \ldots, 8.$$

Let $A = \{1, 2, 3, 4\}$, $B = \{3, 4, 5, 6\}$, $C = \{1, 3, 5, 7\}$. Then A, B, C are independent.

Definition 3.4 The events $\{A_1, A_2, \ldots, A_n\} \subseteq \mathcal{F}$ are said to be independent if for any distinct $A_{i_1}, \ldots, A_{i_m}, m \geq 2$ from $\{A_1, A_2, \ldots, A_n\}$

$$P(A_{i_1} \ldots A_{i_m}) = P(A_{i_1}) \ldots P(A_{i_m}).$$

Using the notion of independence of events, one can define the independence of σ-fields as follows.
Definition 3.5 Two \(\sigma \)-fields \(\mathcal{F}_1, \mathcal{F}_2 \) of subsets of \(\Omega \) are said to be independent if for any \(A \in \mathcal{F}_1, \ B \in \mathcal{F}_2 \)

\[
P(AB) = P(A)P(B).
\]

Definition 3.6 The \(\sigma \)-fields \(\mathcal{F}_1, \mathcal{F}_2, \ldots, \mathcal{F}_n \) of subsets of \(\Omega \) are said to be independent if \(A_1, A_2, \ldots, A_n \) are independent whenever \(A_i \in \mathcal{F}_i, \ i = 1, 2, \ldots, n. \)

One can go a step further to define independence of any family of \(\sigma \)-fields as follows.

Definition 3.7 A family of \(\sigma \)-fields \(\{ \mathcal{F}_i \mid i \in I \} \), where \(I \) is an index set, are independent if for any finite subset \(\{ \alpha_1, \cdots \alpha_n \} \subseteq I \), the \(\sigma \)-fields \(\mathcal{F}_{\alpha_1}, \cdots, \mathcal{F}_{\alpha_n} \) are independent.

Finally one can introduce the notion of independence of random variables through the corresponding \(\sigma \)-field generated. It is natural to define independence of random variables using the corresponding \(\sigma \)-fields, since the \(\sigma \)-field contains all information about the random variable.

Definition 3.8 Two random variables \(X \) and \(Y \) are independent if \(\sigma(X) \) and \(\sigma(Y) \) are independent.

Definition 3.9 A family of random variables \(\{ X_i \mid i \in I \} \) are independent if \(\{ \sigma(X_i) \mid i \in I \} \) are independent.

Example 3.0.21 Let \(A, B \) are independent events iff \(\sigma(A) \) and \(\sigma(B) \) are independent \(\sigma \)-fields iff the random variables \(I_A \) and \(I_B \) are independent.

Proof. Let \(A \) and \(B \) are independent. Consider

\[
P(AB^c) = P(A) - P(AB) = P(A)(1 - P(B)) = P(A)P(B^c)
\]

Hence \(A \) and \(B^c \) are independent. Changing the roles of \(A \) and \(B \) we have \(A^c \) and \(B \) are independent. Now \(A^c \) and \(B \) are independent implies that \(A^c \) and \(B^c \) are independent.

Since

\[
\sigma(A) = \{ \emptyset, A, A^c, \Omega \}, \quad \sigma(B) = \{ \emptyset, B, B^c, \Omega \},
\]

it follows that \(\sigma(A) \) and \(\sigma(B) \) are independent. Converse statement is obvious.

The second part follows from
\[\sigma(A) = \sigma(I_A), \sigma(B) = \sigma(I_B). \]

Example 3.0.22 The trivial \(\sigma \)-field \(\mathcal{F}_0 = \{\emptyset, \Omega\} \) is independent of any \(\sigma \)-field of subsets of \(\Omega \).

Example 3.0.23 Define a probability space \((\Omega, \mathcal{F}, P) \) as follows:

\[
\Omega = \{(a_1, a_2, \ldots, a_n) | a_i = 0, 1; i = 1, \ldots, n\}, \quad \mathcal{F} = \mathcal{P}(\Omega)
\]

and

\[
P\{(a_1, a_2, \ldots, a_n)\} = \frac{1}{2^n} \text{ for all } (a_1, \ldots, a_n) \in \Omega.
\]

For \(i = 1, 2, \ldots, n \), set

\[A_i = \{(a_1, a_2, \ldots, a_n) | a_i = 1\}. \]

Then \(A_1, A_2, \ldots, A_n \) are independent.

This can be seen from the following.

\[
P(A_i) = \frac{2^{n-1}}{2^n} = \frac{1}{2} \quad \forall \ i = 1, 2, \ldots, n.
\]

Note that

\[
A_{i_1} \ldots A_{i_m} = \{(a_1, \ldots, a_m) | a_{i_1} = \cdots = a_{i_m} = 1\}.
\]

Hence

\[
P(A_{i_1} \ldots A_{i_m}) = \frac{2^{n-m}}{2^n} = \frac{1}{2^m} \quad \forall \ i_1, \ldots, i_m.
\]

Also

\[
P(A_{i_1}) \ldots P(A_{i_m}) = \left(\frac{1}{2}\right)^m = \frac{1}{2^m}.
\]

Example 3.0.24 Let \((\Omega, \mathcal{F}, P) \) is given by as

\[
\Omega = \{HH, HT, TH, TT\}, \quad \mathcal{F} = \mathcal{P}(\Omega)
\]

and
Define two random variables X_1, X_2 as

\[X_1(HH) = X_1(HT) = 1, \quad X_1(TH) = X_1(TT) = 0, \]
\[X_2(HH) = X_2(TH) = 1, \quad X_2(HT) = X_2(TT) = 0. \]

Then X_1 and X_2 are independent. Here note that

\[\sigma(X_1) = \{ \emptyset, \{HH, HT\}, \{TH, TT\}, \Omega \} \]

and

\[\sigma(X_2) = \{ \emptyset, \{HH, TH\}, \{HT, TT\}, \Omega \}. \]

We conclude this chapter with the celebrated Borel-Cantelli Lemma. To this end, we need the notion of limsup and liminf of events.

Definition 3.10 (lim sup of sets) For A_1, A_2, \ldots, subsets of Ω, define

\[\limsup_n A_n := \bigcap_{n=1}^{\infty} \bigcup_{k=n}^{\infty} A_k. \]

Similarly

\[\liminf_n A_n = \bigcup_{n=1}^{\infty} \bigcap_{k=n}^{\infty}. \]

In the following theorem, we list some useful properties of limsup and liminf. This will make the objects \(\liminf \) and \(\limsup \) of sets much clearer.

Theorem 3.0.11

1. Let

\[\{A_n \text{ i.o.}\} := \{\omega \in \Omega \mid \omega \in A_n \text{ for infinitely many } n\}. \]

Then

\[\limsup_n A_n = \{A_n \text{ i.o.}\}. \]

2. Let

\[\{A_n \text{ all but finitely many}\} := \{\omega \in \Omega \mid \omega \in A_n \text{ except for finitely many } n\}. \]

Then

\[\liminf_n A_n = \{A_n \text{ all but finitely many}\}. \]
3. The following inclusion holds.
\[\limsup_{n} A_n \supseteq \liminf_{n} A_n. \]

4. The following identity holds.
\[[\limsup_{n} A_n]^c = \liminf_{n} (A_n)^c. \]

5. If \(A_1 \subseteq A_2 \subseteq \cdots \), then
\[\limsup_{n} A_n = \bigcup_{n=1}^{\infty} A_n = \liminf_{n} A_n \]

6. If \(A_1 \supseteq A_2 \supseteq \cdots \), then
\[\limsup_{n} A_n = \bigcap_{n=1}^{\infty} A_n = \liminf_{n} A_n. \]

Proof.

1. Consider
\[\omega \in \limsup_{n} A_n \iff \omega \in \bigcup_{k=n}^{\infty} A_k \text{ for all } n \neq 1 \]
\[\iff \text{There exists } n_1, n_2, \ldots \text{ such that } \omega \in A_{n_k}, \text{ for all } k \geq 1 \]
\[\iff \omega \in A_n \text{ i.o.} \]

This proves (1).

2. Consider
\[\omega \in \liminf_{n} A_n \iff \omega \in \bigcap_{k=n}^{\infty} A_k \text{ for some } n \neq 1 \]
\[\iff \text{There exists } n_0 \geq 1 \text{ such that } \omega \in A_n, \text{ for all } n \geq n_0 \]
\[\iff \omega \in A_n \text{ all but finitely many} \]

Thus (2).

3. Proof of (3) follows from (1) and (2).

4. Proof of (4) follows from De Morgan's laws.

5. Consider
\[\limsup_{n} A_n = \bigcap_{n=1}^{\infty} \bigcup_{k=n}^{\infty} A_k = \bigcap_{n=1}^{\infty} (\bigcup_{k=n}^{\infty} A_k) = \bigcup_{n=1}^{\infty} A_n \text{ (since } A_1 \subseteq A_2 \subseteq \cdots). \]

Similarly
\[\liminf_{n} A_n = \bigcup_{n=1}^{\infty} \bigcap_{k=n}^{\infty} A_k = \bigcup_{n=1}^{\infty} A_n. \]

This proves (5).
6. The proof of (6) follows from (4) and (5).

Remark 3.0.4 The properties (1)-(6) are analogous to the corresponding properties of \(\limsup \) and \(\liminf \) of real numbers.

Remark 3.0.5 Analogous to the notion of limit of sequence of numbers, one can say that \(\lim_{n \to \infty} A_n \) exists if

\[
\liminf_{n \to \infty} A_n = \limsup_{n \to \infty} A_n.
\]

Hence from Theorem 3.0.11 (5), if \(\{A_n\} \) is an increasing sequence of sets, then \(\lim_{n \to \infty} A_n \) exists and is \(\bigcup_{n=1}^{\infty} A_n \). Similarly using Theorem 3.0.11 (6), if \(\{A_n\} \) is a decreasing sequence of sets, then \(\lim_{n \to \infty} A_n \) exists and is \(\bigcap_{n=1}^{\infty} A_n \). Now student can see why property (6) in Theorem 1.0.1 is called the continuity property of probability.

Theorem 3.0.12 (Borel - Cantelli Lemma) Let \((\Omega, \mathcal{F}, P) \) be a probability space and \(A_1, A_2, \ldots \in \mathcal{F} \).

(i) If

\[
\sum_{n=1}^{\infty} P(A_n) < \infty
\]

then

\[
P(\limsup_{n} A_n) = 0.
\]

(ii) If

\[
\sum_{n=1}^{\infty} P(A_n) = \infty
\]

and

\[\{A_n \mid n = 1, 2, \ldots\}\]

are independent, then

\[
P(\limsup_{n} A_n) = 1.
\]

Proof: (i) Consider
\[P(\limsup_{n} A_{n}) = P(\cap_{n=1}^{\infty} \cup_{k=n}^{\infty} A_{k}) \]
\[\leq P(\cup_{k=n}^{\infty} A_{k}) \forall n = 1, 2, \ldots \]
\[\leq \sum_{k=n}^{\infty} P(A_{k}) \text{for all } n = 1, 2, \ldots. \]

Note that the r.h.s $\to 0$ as $n \to \infty$, since
\[\sum_{n=1}^{\infty} P(A_{n}) < \infty. \]

Therefore
\[P(\limsup_{n} A_{n}) = 0. \]

(ii) Note that

\[(\limsup_{n} A_{n})^{c} = \cup_{n=1}^{\infty} \cap_{k=n}^{\infty} A_{k}^{c}. \]

Therefore
\[P(\limsup_{n} A_{n}) = 1 - P(\cup_{n=1}^{\infty} \cap_{k=n}^{\infty} A_{k}^{c}). \]

Now
\[P(\cap_{k=n}^{\infty} A_{k}^{c}) \leq P(\cap_{k=n}^{n+m} A_{k}^{c}) \text{ for all } m = 1, 2, \ldots \]
\[= \Pi_{k=n}^{n+m} P(A_{k}^{c}). \]

The last equality follows from
\[{A_1, A_2, \cdots \text{ are independent} \Rightarrow \{A_1^{c}, A_2^{c}, \cdots \text{ are independent.}}\]

Using $1 - x \leq e^{-x}$, we get
\[P(\cap_{k=n}^{\infty} A_{k}^{c}) \leq \Pi_{k=n}^{n+m} (1 - P(A_{k})) \leq \Pi_{k=n}^{n+m} e^{-P(A_{k})}. \]

Since
\[\sum_{n=1}^{\infty} P(A_{n}) = \infty \]

we get
\[\lim_{n \to \infty} e^{-\sum_{k=n}^{n+m} P(A_{k})} = 0. \]

Therefore
\[P(\cap_{k=n}^{\infty} A_{k}^{c}) = 0 \forall n = 1, 2, \ldots. \]
Thus
\[P(\bigcup_{n=1}^{\infty} \bigcap_{k=n}^{\infty} A_k^c) \leq \sum_{n=1}^{\infty} P(\bigcap_{k=n}^{\infty} A_k^c) = 0. \]

Therefore
\[P(\limsup_{n} A_n) = 1. \]

This completes the proof.

Example 3.0.25 Define a probability space \((\Omega, \mathcal{F}, P)\) as follows.

\[\Omega = \{(a_1, a_2, \cdots, a_n, \cdots) | a_n = 0, 1; n = 1, 2, \cdots \}. \]

Set
\[\mathcal{I} = \{A_{r_1 r_2 \cdots r_n} | n = 1, 2, \cdots; r_i = 0, i = 1, 2, \cdots n\} \]

where
\[A_{r_1 r_2 \cdots r_n} = \{(a_1, a_2, \cdots, a_n, \cdots) | a_i = r_i, i = 1, 2, \cdots, n\}. \]

Let
\[\mathcal{B}_0 = \text{Set of all finite disjoint union of members of } \mathcal{I}. \]

Then \(\mathcal{B}_0\) is a field, see Exercise 3.5. Define
\[\mathcal{F} = \sigma(\mathcal{B}_0). \]

For \(A_{(r_1 \cdots r_n)} \in \mathcal{I},\) define
\[P(A_{r_1 \cdots r_n}) = \frac{1}{2^n}. \]

For \(B \in \mathcal{B}_0,\) there exists \(I_i \in \mathcal{I}, i = 1, 2, \cdots, n\) which are pairwise disjoint such that
\[B = \bigcup_{i=1}^{n} I_i. \]

Define \(P\) as follows.
\[P(B) = P(\bigcup_{i=1}^{n} I_i) = \sum_{i=1}^{m} P(I_i). \]

Now extend \(P\) to \(\mathcal{F}\) using the extension theorem.

Let
\[A = \{(a_1, a_2, \cdots) | a_n = 1 \text{ for infinitely many } n's\}. \]

One can calculate \(P(A)\) using Borel - Cantelli Lemma as follows. Define
\[A_n = \{(a_1, a_2, \ldots) | a_n = 1\}, n = 1, 2, \ldots \]

Then

\[\{A_1, A_2, \ldots\} \]

are independent and

\[P(A_n) = \frac{1}{2} \text{ for all } n = 1, 2, \ldots. \]

Hence

\[\sum_{n=1}^{\infty} P(A_n) = \infty \]

Also note that

\[\limsup A_n = A. \]

Therefore using Borel - Cantelli Lemma

\[P(A) = 1. \]