Interprocedural Data-Flow Analysis

Y.N. Srikant
Department of Computer Science and Automation
Indian Institute of Science
Bangalore 560012

NPTEL Course on Compiler Design
Motivation for Interprocedural DFA

- All DFA and optimizations that we have studied so far are **intraprocedural**
 - are performed on one procedure at a time
 - assume that procedures invoked may alter all the “visible” variables
 - imprecise, conservative, but simple
- Interprocedural analysis operates across an entire program
 - makes information flow from caller to callee and vice-versa
Procedure *inlining* is a simple method to enable such information flow
- applicable only if target of a call is known
- not possible if call is via a pointer or is “virtual”

Interprocedural analysis in O-O languages can sometimes determine if the target of even a “virtual call” is “static”
- now, either a “static” call or inlining can be used

However, inlining should be applied with care
- increases memory footprint
Applications of Interprocedural Analysis

- Converting virtual method calls to static method calls
- Interprocedural pointer analysis helps in making “points-to” sets more precise
 - reaching definitions, available expressions etc., can now be computed with more precision
- Interprocedural analysis eliminates spurious data dependencies, interprocedural constant propagation makes loop bounds known
 - exposes more parallelism during parallelization
- Interprocedural analysis helps in detecting
 - lock-unlock pattern of critical regions
 - disable-enable of interrupts
 - SQL injection (lack of input validation in Web applications)
 - vulnerabilities due to buffer overflows (frequently, array bounds are not checked)
Call Graphs

- A call graph for a program is a set of nodes and edges such that
 - There is one node for each procedure
 - There is one node for each call site
 - If call site c may call procedure p, then there is an edge $c \rightarrow p$

- C and Fortran make procedure calls directly by name
 - hence call target of each invocation can be determined statically
Call Graphs

- If the program includes a procedure parameter or a function pointer
 - target is not known until runtime
 - target may vary from one invocation to another
 - call site can link to many or even all procedures in the call graph (considering only return types of functions)

- Ex: virtual method invocations in C++/Java
 - calls through the base class pointer cannot be resolved till runtime
Example of Call Graph

```c
int (*fp) (int);
int  f1(int x) {
    if (x > 100) return (*fp)(x-1); // csite 1
    else    return x;
}
int  f2(int y) {
    fp = &f1; return (*fp)(y); // csite 2
}
void main() {
    fp = &f2;  (*fp)(200); // csite 3
}
```
Call Graph Example

Conservative call graph

Exact call graph
Analysis of Call Graph

- Presence of references or pointers to functions or methods
 - helps us in getting a static approximation of the values of all procedure parameters, function pointers, and receiver object types
- With interprocedural analysis
 - more targets can be discovered and new edges can be inserted into the call graph
- This iterative procedure is repeated until convergence is reached
Context Sensitivity

i = 9;
while (i >= 0) {
 t1 = test(100); // call site 1
 t2 = test(200); // call site 2
 t3 = test(300); // call site 3
 val[i--] = t1 + t2 + t3;
}

int test (int v) {
 return (v*2);
}

- Function test is invoked with a constant in each of the call sites, but the value of the constant is context-dependent
- It is not possible to infer that t1, t2, and t3 are each assigned constant values (hence for val[i] as well) unless we recognize the context
- A naive analysis would infer that test can return 200, 400, or 600 from any of the three calls

A context-sensitive analysis returns 200, 400, and 600 for t1, t2, and t3 (resp.), and 1200 for val[i]
Context Insensitive Analysis

- Treat each call and return as `goto` operations
- Create a **super control flow graph**
 - contains all the normal intraprocedural control-flow edges
 - edge connecting each call site to the beginning of the procedure it calls
 - edge connecting return statement back to the call site
 - assignment statements to assign
 - each actual parameter to its corresponding formal parameter
 - the returned value to the receiving variable
- Apply standard analysis on the super CFG
- Simple, but imprecise, because a function is analyzed as a common entity for all its calls and only its input-output behaviour abstracted out
Super Control Graph and Context-Insensitive Analysis Example

\[i = 9 \]

\[\text{if } i < 0 \text{ goto L} \]

\[v = 100 \text{ // call site 1} \]

\[v = 200 \text{ // call site 2} \]

\[v = 300 \text{ // call site 3} \]

\[\text{retval} = v^2 \text{ // func test} \]

\[v (B6): 100, 200, \text{ or } 300 \]

\[t1 (B4): 200, 400, \text{ or } 600 \]

\[t2 (B5): 200, 400, \text{ or } 600 \]

\[t3 (B7): 200, 400, \text{ or } 600 \]

\[\text{val}[i] (B7): 600, 800, 1000, 1200, 1400, 1600, \text{ or } 1800 \]
Call Strings

- In the previous example, we needed just the call site to distinguish among the contexts.
- In general, the entire call stack defines a calling context.
- The string of call sites in the call stack is known as the call string.
- We may choose to use the k entries just below any call site in the stack to distinguish between contexts.
 - k-limiting context analysis
 - reduces precision and makes results more conservative.
 - We take each call string, follow the calls, and perform data flow analysis, replacing the parameters and result variables as we go up and down the call string.
k-limiting Call Strings

i = 9;
while (i >= 0) {
 t1 = f (100); // call site c1
 t2 = f (200); // call site c2
 t3 = f (300); // call site c3
 val[i--] = t1 + t2 + t3;
}
int f (int v) {
 return test (v); // call site c4
}
int test (int v) {
 return (v*2);
}

- There are 3 call strings to test: (c1,c4), (c2,c4), (c3,c4)
- The value of v in test does not depend on the last call site c4, but on the first element of each of the call strings
- In this case, 2-limiting context analysis is enough
Complete Call Strings

```c
i = 9;
while (i >= 0) {
    t1 = f (100); // call site c1
    t2 = f (200); // call site c2
    t3 = f (300); // call site c3
    val[i--] = t1 + t2 + t3;
}
int f (int v) {
    if (v > 101)
        return f (v-1); // call site c4
    else
        return test (v); // call site c5
}
int test (int v) {
    return (v*2);
}
```

- There are 3 call strings to test
 - (c1,c5), value returned is 200
 - (c2,c4,c4,...,c4,c5): c4 is repeated 100 times, value returned is 202
 - (c3,c4,c4,...,c4,c5): c4 is repeated 200 times, value returned is 202
- The value of v in test depends on the full call string
- In this case, k-limiting context analysis is not enough, for any k
Cloning-Based Context-Sensitive Analysis

Simple, context-insensitive analysis is enough on the cloned call graph

```c
i = 9;
while (i >= 0) {
    t1 = f1 (100); // call site c1
    t2 = f2 (200); // call site c2
    t3 = f3 (300); // call site c3
    val[i--] = t1 + t2 + t3;
}
int f1 (int v) {
    return test1 (v); // call site c4.1
}
int test1 (int v) {
    return (v*2);
}

int f2 (int v) {
    return test2 (v); // call site c4.2
}
int test2 (int v) {
    return (v*2);
}

int f3 (int v) {
    return test3 (v); // call site c4.3
}
int test3 (int v) {
    return (v*2);
}
```

Recursive programs cannot be handled
Summary-Based Context-Sensitive Analysis

- Each procedure is represented by a concise description ("summary") that encapsulates some observable behaviour of the procedure.
- In reaching definitions or available expressions analysis, the appropriate OUT sets of the "procedure end" blocks would serve the purpose.
- We now explain one method of doing such an analysis.
- Recursion can also be handled using fixpoint computation.
The Problem of Aliases

- \(b+x \) will change in B3 if \(y \) is an alias of either \(b \) or \(x \)
- How can aliases arise?
- Consider a procedure

```latex
\textbf{procedure} p(x,y)
```

and calls to \(p \): \(p(z,z) \) or a call of \(p(u,v) \) from another procedure \(q(u,v) \) but \(q \) is called as \(q(z,z) \).

```
\begin{align*}
a &= b+x \\
y &= c \\
d &= b+x
\end{align*}
```
Aliases

- In reaching definitions, it is conservative not to regard variables as aliases when in doubt
 - So, we do not kill definitions when in doubt
- But, in available expressions, it is exactly the opposite
 - In the above example, if \(b+x \) is to be available in B3, we must be *certain* that \(b \) and \(x \) are not aliases of \(y \)
 - If in doubt, we assume aliasing and kill \(b+x \)
Alias Analysis

- Assume a language with recursive procedures but no nesting of procedures
- Parameters are passed by reference

1. Rename variables in procedures (if necessary) so that all names are different
2. If there is a procedure \(p(x_1, x_2, \ldots, x_n) \) and a call \(p(y_1, y_2, \ldots, y_n) \), then set \(x_i \equiv y_i \), for all \(i \)
3. Take reflexive and transitive closure of \(\equiv \)
global g,h;
procedure main() {
 local i;
 g = ...; one(h,i);
}
procedure one(w,x) {
 x = ...;
 two(w,w); two(g,x);
}

procedure two(y,z) {
 local k;
 h = ...; one(k,y);
}

- **main**: \(h \equiv w, \ i \equiv x \)
- **one**: \(w \equiv y, \ w \equiv z, \ g \equiv y, \ x \equiv z \)
- **two**: \(k \equiv w, \ y \equiv x \)
- All variables are aliases of each other
Change Computation

- **change**[p]: a set of global variables and formal parameters of p, that might be changed during an execution of p. No aliasing is considered at this time.

- **def**[p]: a set of formal parameters of p and globals having explicit definitions within p (not including those defined because of procedure calls made within p).
Change Computation

- \(\text{change}[p] = \text{def}[p] \cup \text{A}[p] \cup \text{G}[p] \), where
- \(\text{A}[p] = \{a \mid a \text{ is a global variable or formal param of } p, \text{ such that, for some proc } q \text{ and integer } i, p \text{ calls } q \text{ with } a \text{ as the } i^\text{th} \text{ actual param and the } i^\text{th} \text{ formal param of } q \text{ is in } \text{change}[q] \} \)
- \(\text{G}[p] = \{g \mid g \text{ is a global in } \text{change}[q] \text{ and } p \text{ calls } q \} \)
- We use a simplified calling graph whose nodes are procedures. There is an edge from \(p \) to \(q \) if \(p \) calls \(q \) somewhere in the program.
Example for the set $A[p]$

```
procedure p(...)
{ call q(...,a,...)
  ...
}
```

i^{th} actual parameter

```
procedure q(b_1,b_2,...,b_i,...,b_n)
{   ...
}
```

i^{th} formal parameter and b_i is in change[q]
Change Computation

- Input: A calling graph with a collection of procedures, \(p_1, p_2, \ldots, p_n \). If the calling graph is acyclic, then we assume that \(p_i \) calls \(p_j \) only if \(j < i \), otherwise, no assumptions.

- Output: \text{change}[p]

- It is assumed that \text{def}[p] is precomputed.
for each proc p do change[p] = def[p];
while changes to any change[p] occur do {
 for i = 1 to n do {
 for each proc q called by p_i do {
 1. add any globals in change[q] to change[p_i]; // adding $G[p_i]$
 2. for each formal parameter x (j^{th}) of q do
 if x is in change[q] then
 for each call of q by p_i do
 if a, the j^{th} actual param of the call is a
 global or formal parameter of p_i then
 add a to change[p_i] // adding $A[p_i]$
 }
 }
 }
}
Alias Analysis Example

global g,h;
procedure main() {
 local i;
 g = ...; one(h,i);
}
procedure one(w,x) {
 x = ...;
two(w,w); two(g,x);
}

procedure two(y,z) {
 local k;
 h = ...; one(k,y);
}

- **main**: h ≡ w, i ≡ x
- **one**: w ≡ y, w ≡ z, g ≡ y, x ≡ z
- **two**: k ≡ w, y ≡ x
- All variables are aliases of each other
def(main) = \{g\} = \text{change(main)}, G(main) = \Phi
def(two) = \{h\} = \text{change(two)}, G(two) = \Phi
def(one) = \{x\} = \text{change(one)}, G(one) = \{h\}, \text{since}
“one” calls “two”, h is a global and change(two) contains h

Consider “two”. “two” calls “one”
one(k, y) – actual params, k is local
one(w,x) – formal params, x is in change(one)
Therefore, A(two) = \{y\}, change(two) = \{h,y\}

Consider “one”. “one” calls “two” twice
two(w, w) – actual params
two(y, z) – formal params, y is in change(two)
Therefore, A(one) = \{w\}
two(g, x) – actual params
two(y, z) – formal params, y is in change(two)
Therefore, A(one) = \{w,g\}, change(one) = \{w,g,h,x\}

Consider “main”. “main” calls “one”
one(h, i) – actual params, i is local
one(w, x) – formal params, w is in change(one)
Therefore, A(main) = \{h\}, change(main) = \{g,h\}
Use of Change Information in computing Available Expressions – Method 1

- Each procedure call is a separate basic block
- Method 1: B is a block for call to proc p
 - $a_{\text{gen}}[B] = \Phi$, for all proc call basic blocks
 - $a_{\text{kill}}[B]$: if a variable b is in $\text{change}[p]$, then b kills all expressions involving b and its aliases
 - a_{gen} and a_{kill} for all other types of blocks are computed in the usual manner
 - Knowing $a_{\text{gen}}[B]$ and $a_{\text{kill}}[B]$ for proc call blocks, computing $\text{IN}[B]$ and $\text{OUT}[B]$ for all blocks in the whole procedure proceeds in the usual manner
Use of Change Information in computing Available Expressions – Method 2

- Compute IN and OUT for all blocks in all procedures as usual, after computing \(\text{a_gen} \) and \(\text{a_kill} \) for procedure calls as in method 1.

- \(\text{a_out} \) at the return point from a procedure \(p \) can be taken as \(\text{a_gen}[p] \) for a block with a call to \(p \) (with no aliases applied).
 - However, consider only those expressions in \(\text{a_out} \) with all their variables in \(\text{change}[p] \).
 - We substitute actual params for the formal params and see what expressions are generated by the call.

- Without changing \(\text{a_kill} \) for proc call blocks, computations of IN and OUT are repeated.

- This procedure is repeated until no changes occur.