Topic: Transcription Method to Solve Optimal Control Problems

Prof. Radhakant Padhi
Dept. of Aerospace Engineering
Indian Institute of Science - Bangalore

Topics

- Motivation
- Philosophy of Transcription Method
- Pseudospectral Transcription
- A Toy Problem
- An Application Problem
Motivation

Prof. Radhakant Padhi
Dept. of Aerospace Engineering
Indian Institute of Science - Bangalore

Optimal Control Formulation

- Indirect Approach: - Variational Calculus
- Direct Approach:
 - Dynamic Programming
 - Transcription Method
Necessary Conditions of Optimality through Variational Calculus (Dualization)

- State Equation: \(\dot{X} = \frac{\partial H}{\partial \dot{X}} = f(t, X, U) \)
- Costate Equation: \(\dot{\lambda} = -\left(\frac{\partial H}{\partial X} \right) = g(t, X, U) \)
- Optimal Control Equation: \(\frac{\partial H}{\partial U} = 0 \) \(\Rightarrow \) \(U = \psi(X, \lambda) \)
- Boundary Condition: \(\lambda_f = \frac{\partial \phi}{\partial X} \) \(X(t_f) = X_0 : \text{Fixed} \)

Shooting Method Philosophy

- Guess the initial condition for costate
- Compute the control at each grid point
- Propagate the state and costate
- Calculate the final boundary condition and error in the costate at the final time
- Correct the costate vector at the initial time based on this error at the final time
- Repeat the procedure
Problems in Shooting Method

- Sensitivity of the procedure to the initial guess value of costate
- Costates do not have ‘physical meaning’: complicates the issue of selecting ‘good’ initial values (it is usually done through guessing a control history)
- Costate equation is normally unstable for stable state dynamics: Long-duration prediction is not good!

Multiple Shooting Approach

- Strategy: “Divide-and-Rule”; i.e. divide the control application duration to multiple segments and solve the individual segments independently (possibly in a parallel setting to speed up the solution).
- This approach is called “Multiple Shooting”
- It brings in additional constraints of continuity and smoothness at the ‘joining points’.
- Extension of this philosophy leads to “Transcription Method”: A Direct Approach!
Transcription Method

Prof. Radhakant Padhi
Dept. of Aerospace Engineering
Indian Institute of Science - Bangalore

Philosophy of Transcription Method

- Convert the dynamic system variables into a finite set of static variables (or parameters)
- Pose an equivalent “static optimization” problem
- Solve this static optimization problem using static (paramter) optimization methods [e.g. using Nonlinear Programming (NLP)]
- Assess the accuracy
- Repeat the steps if necessary
Problem Objective & Philosophy

Objective:

\[\text{Minimize} \quad J(x(.),u(.)) = E(x(t_0), x(t_f)) + \int_{t_0}^{t_f} L(x(t), u(t)) \, dt \]

Subject to

\[\dot{x}(t) = f(x(t), u(t)) \]

with end point conditions

\[e(x(t_0), x(t_f)) = 0 \]

and path constraints

\[h(x(t), u(t)) \leq 0 \]

Philosophy: Select grid points, Discretize the states and control variables, Convert the problem to a nonlinear programming (NLP) problem and solve that problem, preferably in a computationally efficient manner.

Key Components of Direct Transcription

1. Choose discretization points (grid);
2. Approximate the trajectory \(x(t) \);
3. Discretize the state equation (derivative approximation);
4. Approximate the integration in the cost function.

Free variables:

\[\left[(x_{i_0}, u_{i_0}), (x_{i_1}, u_{i_1}), \ldots, (x_{i_N}, u_{i_N}) \right] \]

Euler’s Method:

\[t_{k+1} = t_k + h \]

Approximate \(x(t) \) by piecewise linear function.

Ref: I. M. Ross, Lecture notes, Short course in AIAA GNC-2010, Toronto
Key Components of Direct Transcription

Reference: I. M. Ross, Lecture notes, Short course in AIAA GNC-2010, Toronto

Approximate the derivatives as: $x(t_k) \approx \frac{x(t_{k+1}) - x(t_k)}{h}$

In matrix form,

$$
\begin{pmatrix}
-1 & 1 & 0 & \cdots & 0 \\
1 & -1 & 1 & \cdots & 0 \\
\vdots & \ddots & \ddots & \ddots & \vdots \\
0 & \cdots & 0 & -1 & 1
\end{pmatrix}
\begin{pmatrix}
x_0 \\
x_1 \\
\vdots \\
x_N
\end{pmatrix}
\approx
\begin{pmatrix}
f(x_0, u_0) \\
f(x_1, u_1) \\
\vdots \\
f(x_N, u_N)
\end{pmatrix}
$$

Approximate the integration as:

$$
\int_{t_0}^{t_f} F(t) \, dt \approx \sum_{i=0}^{N-1} h F(t_i)
$$

$$
= \frac{h}{2} \left[F(x_0, u_0) + 2F(x_1, u_1) + \cdots + 2F(x_{N-1}, u_{N-1}) + F(x_N, u_N) \right]
$$

Direct Transcription

End point conditions

$$
x(t_0) = x_0^* \quad \Rightarrow \quad x_0 = x_0^*
$$

$$
\varphi(x(t_f)) = 0 \quad \Rightarrow \quad \varphi(x_N) = 0
$$

Path constraints

$$
h(x(t), u(t)) \leq 0 \quad \Rightarrow \quad
\begin{bmatrix}
h(x_0, u_0) \leq 0 \\
h(x_1, u_1) \leq 0 \\
\vdots \\
h(x_N, u_N) \leq 0
\end{bmatrix}
$$
Direct Transcription: Other Ideas

- Better Approximation of State Dynamics
 - Higher-order Finite difference
 - RK Methods
 - Polynomial Approximations in Segments
- Better Approximation of Cost Function
 - Higher-order Approximations
 - Quadrature Approximations
- Finite Element Approach

Transcription Method

- Accuracy
 - Higher number of grid points
 - Indirect Transcription

- Computational Efficiency
 - Sparse Algebra
 - Mesh Refinement
References

Pseudospectral Transcription

Prof. Radhakant Padhi
Dept. of Aerospace Engineering
Indian Institute of Science - Bangalore
Problem Objective

\[\text{Minimize} \quad J = E(x(t_0), x(t_f)) + \int_{t_0}^{t_f} L(x(t), u(t)) \, dt \]

Subject to \(\dot{x}(t) = f(x(t), u(t)) \)

with end point conditions

\[e(x(t_0), x(t_f)) = 0 \]

and path constraints

\[h(x(t), u(t)) \leq 0 \]

Philosophy: Discretize the states (and the control) using Pseudospectral (PS) method, Convert the problem to a “lower-dimensional” nonlinear programming (NLP) problem and solve that problem in a computationally efficient manner.

Steps involved…

- **1. Approximate** \(x(t) \) and/or \(u(t) \)?
 \[\dot{x}(t) = \sum_{n=0}^{N} a_n \phi_n(t) \quad \dot{u}(t) = \sum_{n=0}^{N} b_n \phi_n(t) \]

- **2. Selection of grid points**
 - How are these points selected?
 - Uniform grid is not a very good choice!

- **3. Discretize the differential equation using PS method**
 - Finite-difference Vs Spectral
 - Sparse Vs Dense differentiation matrix

- **4. Approximate the integral equation**
 - Quadrature rules

- **5. Apply an efficient finite optimization technique and solve the lower dimensional NLP problem.**
1. Approximation

It can be thought of as a function \hat{x} which satisfies the boundary condition and makes the residual small:

$$\|\hat{x} - f\|_{SMALL}$$

$$\hat{x}(t) = f(x(t), u(t))$$

- Define Trial functions: $P_N := \{\phi_0, \phi_1, \ldots, \phi_N\}$

Approximate $\dot{x}(t) = \sum_{n=0}^{N} a_n \phi_n(t)$, $\dot{u}(t) = \sum_{n=0}^{N} b_n \phi_n(t)$

- Define Test functions: $(\chi_0, \chi_1, \ldots, \chi_N)$

$$\langle \chi_n, R \rangle = 0 \quad \forall n \in \{0,1,\ldots,N\}$$

2. Selection of grids

Ref: I. M. Ross, Lecture notes, Short course in AIAA GNC-2010, Toronto

Runge’s famous counter example disproving presumed convergence of interpolating polynomials over a uniform grid.
2. Selection of grids

Grid of collocation points (or grid points) \(t_n, n=0, \ldots, N \) are points such that it satisfies the state equation exactly at these points.

<table>
<thead>
<tr>
<th>Grid of collocation points</th>
<th>Increasing Generality</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gauss-Lobatto</td>
<td>Yes</td>
</tr>
<tr>
<td>Gauss-Radau</td>
<td>Yes</td>
</tr>
<tr>
<td>Gauss</td>
<td>No</td>
</tr>
<tr>
<td>Uniform</td>
<td>No</td>
</tr>
</tbody>
</table>

3. Approximating the differential equation

Approximations: \(\hat{x}(t) = \sum_{n=0}^{N} a_{n} \phi_{n}(t), \quad \hat{u}(t) = \sum_{n=0}^{N} b_{n} \phi_{n}(t) \)

State Equation Constraint:
\[
\begin{align*}
\dot{x} &= f(x(t), u(t)) \\
\dot{\hat{x}} &= f(\hat{x}(t), \hat{u}(t)) \\
\sum_{n=0}^{N} \phi_{n}(t) a_{n} &= f\left(\sum_{n=0}^{N} a_{n} \phi_{n}(t), \sum_{n=0}^{N} b_{n} \phi_{n}(t)\right) \\
\end{align*}
\]

Multiply with \(\delta(t - t_n) \) on both sides:
\[
\sum_{n=0}^{N} \phi_{n}(t_n) a_{n} = f\left(\sum_{n=0}^{N} a_{n} \phi_{n}(t_n), \sum_{n=0}^{N} b_{n} \phi_{n}(t_n)\right), \quad n = 0, 1, \ldots, N
\]
3. Approximating the differential equation (Example)

- The Chebyshev polynomials
 \[T_0(t) = 1 \]
 \[T_1(t) = 2t - 1 \]
 \[T_2(t) = 4t^2 - 8t + 1 \]
 \[T_3(t) = 8t^3 - 48t^2 + 18t - 1 \]
 \[T_4(t) = 32t^4 - 256t^3 + 640t^2 - 320t + 1 \]

- Polynomial Approximation
 \[p(t) = a_0 T_0(t) + a_1 T_1(t) + a_2 T_2(t) + a_3 T_3(t) + a_4 T_4(t) \]

- The differential yields
 \[
 \begin{bmatrix}
 \dot{x}(t_1) \\
 \dot{x}(t_2) \\
 \dot{x}(t_3) \\
 \dot{x}(t_4)
 \end{bmatrix} =
 \begin{bmatrix}
 T_0(t_1) & T_0(t_2) & T_0(t_3) & T_0(t_4) \\
 T_1(t_1) & T_1(t_2) & T_1(t_3) & T_1(t_4) \\
 T_2(t_1) & T_2(t_2) & T_2(t_3) & T_2(t_4) \\
 T_3(t_1) & T_3(t_2) & T_3(t_3) & T_3(t_4)
 \end{bmatrix} \begin{bmatrix}
 a_0 \\
 a_1 \\
 a_2 \\
 a_3
 \end{bmatrix} +
 \begin{bmatrix}
 b_0 \\
 b_1 \\
 b_2 \\
 b_3
 \end{bmatrix}
 \]

- Select Grid Points & Evaluate: \(t_1, t_2, t_3, t_4 \)

4. Discretizing the integral equation - Gauss Quadratures

A quadrature rule is an approximation of the definite integral of a function, usually stated as a weighted sum of function values at specified points within the domain of integration.

\[
\int_{-1}^{1} L(x(t), u(t)) dt = \sum_{n=0}^{N} w_n L(x(t_n), \hat{u}(t_n))
\]

\[
J \equiv J^N = E(\hat{x}(t_N), \hat{u}(t_N)) + \frac{t_f - t_0}{2} \sum_{n=0}^{N} w_n L(\hat{x}(t_n), \hat{u}(t_n))
\]
Finally,

\[\dot{x}(t) = \sum_{n=0}^{N} a_n \phi_n(t) \quad \dot{u}(t) = \sum_{n=0}^{N} b_n \phi_n(t) \]

Minimize,

\[J^N = E(\dot{x}(t_0).\ddot{x}(t_N)) + \frac{t_f - t_0}{2} \sum_{n=0}^{N} w_n E(\dot{x}(t_n).\ddot{u}(t_n)) \]

Subject to,

\[\sum_{n=0}^{N} \phi'_n(t_n) a_n = f(\dot{x}(t_n),\ddot{u}(t_n)) \quad 0 \leq n \leq N \]

with end point conditions,

\[e(\dot{x}(t_0),\ddot{x}(t_N)) = 0 \]

and path constraints,

\[h(\dot{x}(t_n),\ddot{u}(t_n)) \leq 0 \quad 0 \leq n \leq N \]

The optimal control problem has been simplified to a lower dimensional nonlinear programming problem.

A Toy Problem

Dr. Radhakant Padhi
Associate Professor
Dept. of Aerospace Engineering
Indian Institute of Science - Bangalore
Toy Problem

Minimize \[J = \int_0^1 u^*(t)dt \]

Subject to \[\dot{x}(t) = x(t) + u(t) \]

Boundary condition \((x(0), x(1)) = (1, e) \)

Subject to \[|u(t)| \leq 1 \]

1. Decide on which polynomial we are planning as the trial function
 (i) Chebyshev Polynomials of the first kind. Say take N=4 (First 5 polynomials)
 \[T_0(t) = 1, \quad T_1(t) = t, \quad T_2(t) = 2t^2 - 1 \quad T_3(t) = 4t^3 - 3t, \quad T_4(t) = 8t^4 - 8t^2 + 1 \]

(ii) Shifted Chebyshev polynomials for the interval [0,1]
 \[T_0(t) = 1, \quad T_1(t) = 2t - 1 \quad T_2(t) = 8t^2 - 8t + 1 \quad T_3(t) = 32t^3 - 48t + 1 \quad T_4(t) = 128t^4 - 256t^2 + 160t^2 - 32t + 1 \]

Step 2. Define the collocation (grid) points

Shifted \[t_i = \frac{1}{2} \frac{2a + b}{2} \frac{a - b}{N} \frac{(i \pi)}{N - 1} \quad i = 0, 1, \ldots, N - 1 \]
Toy Problem (Contd.)

Step 3. Approximate $x(t)$ and $u(t)$ using trial function

$$
\hat{x}(t) = \sum_{n=0}^{4} a_n T_n(t)
$$

$$
\hat{u}(t) = \sum_{n=0}^{4} b_n T_n(t)
$$

Step 4. Find the differentiation matrix and equate the state equation at the grid points

$$
\frac{d}{dt}(\hat{x}(t_i)) = \hat{x}(t_i) + \hat{u}(t_i)
$$

Toy Problem (Contd.)

Step 5. Compute $T_n(t)$ matrix for t_i and equate the state equation, $i = 0,1,2,3,4$

Finally, we have

$$
T^{-1}(T \times D - I)
$$
Toy Problem (Contd.)

Step 6. Apply boundary conditions

\[
\begin{bmatrix}
1 \\
x(0) \\
x(1) \\
e
\end{bmatrix} =
\begin{bmatrix}
1 & -1 & 1 & -1 & 1 \\
1 & -1/\sqrt{3} & 0 & 1/\sqrt{3} & -1 \\
1 & 0 & -1 & 0 & 1 \\
1 & 1/\sqrt{3} & 0 & -1/\sqrt{3} & -1 \\
1 & 1 & 1 & 1 & 1
\end{bmatrix}
\begin{bmatrix}
a_0 \\
a_1 \\
a_2 \\
a_3 \\
a_4
\end{bmatrix}
\]

This gives,

\[a_0 - a_1 + a_2 - a_3 + a_4 = 1\]
\[a_0 + a_1 + a_2 + a_3 + a_4 = 2.7182\]

Fix \(x(0) = 1\)

Fix \(x(1) = e\)

Toy Problem (Contd.)

Step 7. Approximate the integral equation

\[
J = \int_0^1 \hat{u}^2(t)\,dt \approx J^n = \frac{1}{2}\sum_{k=0}^n w_k \hat{u}^2(t_k)
\]

where

\[w_k = (b - a)\frac{n}{n+1} = \{1.57, 0.7854, 0.5236, 0.3927, 0.3142\}\]
Finally, we have

\[J^N = \frac{1}{2} \sum_{k=0}^{N-1} w_k \hat{u}^2(t_k) \]
\[\dot{x}(t_k) + \hat{u}(t_k) - \hat{x}(t_k) = 0 \]
\[\hat{u}(t_k) - 1 \leq 0 \quad \text{for} \quad k = 0, 1, 2, 3, 4 \]

Define the augmented cost function,

\[J^N = \frac{1}{2} \sum_{k=0}^{N-1} w_k \hat{u}^2(t_k) + \sum_{k=0}^{N-1} \lambda_k (\hat{x}(t_k) + \hat{u}(t_k) - \hat{x}(t_k)) + \sum_{k=0}^{N-1} \mu \lambda_k (\hat{u}(t_k) - 1) + \nu \lambda (\hat{x}(0) - 1) + \nu \lambda (\hat{x}(e) - 1) \]

Apply any KKT (or any other static optimization technique) for solving the optimal control problem.

Toy Problem (Contd.)

Define the augmented cost function

\[J^N = \frac{1}{2} \sum_{k=0}^{N-1} w_k \hat{u}^2(t_k) + \sum_{k=0}^{N-1} \lambda_k (\hat{x}(t_k) + \hat{u}(t_k) - \hat{x}(t_k)) + \sum_{k=0}^{N-1} \mu \lambda_k (\hat{u}(t_k) - 1) + \nu \lambda (\hat{x}(0) - 1) + \nu \lambda (\hat{x}(e) - 1) \]

Apply any KKT (or any other static optimization technique) for solving the optimal control problem.

Toy Problem: Results

![Graph showing results](image)

\[\sigma_0 = 1.7534 \quad \sigma_1 = 0.8503 \quad \sigma_2 = 0.1052 \quad \sigma_3 = 0.0088 \quad \sigma_4 = 0.0005 \]
Toy Problem: Results

![Graph showing control effort over time with time (sec) on the x-axis and control effort on the y-axis.](image)

- $b_0 = 0.0014$, $b_1 = 0.0004$, $b_2 = -0.0009$, $b_3 = 0.0006$, $b_4 = -0.0016$

Minimum-time Front-to-back Turning of an Air-Launched Missile using Pseudo-Spectral Method

Full Paper: Proceedings of 2012 IFAC EGNCA Workshop, Bangalore

Prof. Radhakant Padhi
Dept. of Aerospace Engineering
Indian Institute of Science - Bangalore
Reference

The problem

- Launch a missile from a aircraft in the forward direction and attack a target in the rear hemisphere.
- Missile has to reverse the flight path angle as quickly as possible so as to intercept the target.
- The problem is to reverse the flight path angle from an initial value (around 0°) to -180° in minimum time.
- After turning it should also have the required velocity (a constraint on the final Mach number) to intercept the target.
The problem –
Cost function and boundary conditions

Minimize
\[J = \int_{0}^{t_f} dt \]
subject to the constraint
\[\gamma(t_0) = \text{known (around 0°)}, \quad \gamma(t_f) = -180° \]
\[M(t_0) = \text{known}, \quad M(t_f) = 0.8 \]

The problem is to reverse the flight path angle from 0° to -180° maintaining a final Mach number of 0.8 in minimum time.

System Dynamics

The point mass equations of motion:
\[V(t) = \frac{D}{m} - \frac{W}{m} \sin \gamma + \frac{T}{m} \cos(\alpha + \delta) \]
\[\dot{\gamma}(t) = \frac{1}{mV} (L - W \cos \gamma + T \sin(\alpha + \delta)) \]
\[\dot{h}(t) = V \sin \gamma \]
\[\dot{x}(t) = V \cos \gamma \]
System Dynamics

Ref: Han et al., “State constrained Agile Missile Control with Adaptive Critic Based Neural Networks”, JGCD, 2002

The non-dimensional parameters were considered as:

\[
\tau = \frac{g}{at}; \quad T_w = \frac{T}{mg}; \quad S_w = \frac{\rho a^2 S}{2mg}; \quad M = \frac{V}{a}
\]

Non-dimensional point mass equations of motion:

\[
M'\tau = -S_w M^2 C_\alpha - \sin \gamma + T_w \cos(\alpha + \delta_w) \\
\gamma' = \frac{1}{M} \left(S_w M^2 C_\gamma - \cos \gamma + T_w \sin(\alpha + \delta_w) \right) \\
h' = \frac{\sigma x^2 M \sin \gamma}{g} \\
x' = \frac{\sigma x^2 M \cos \gamma}{g}
\]

Minimum time problem

- Free final time problem - state constrained problem, with bounds on control.

- Equations of motion are reformulated using flight path angle as the independent variable.

- Leads to a fixed final condition.

- Assumption: Flight path angle is a monotonic continuous function with respect to time.
\(y\) as independent variable

Modified state equations with respect to flight path angle

\[
\frac{dM}{d\gamma} = M' \gamma; \quad \frac{dt}{d\gamma} = \frac{1}{\gamma'}; \quad \frac{dh}{d\gamma} = h' \gamma; \quad \frac{dx}{d\gamma} = x' \gamma
\]

Modified cost function

\[
J = \int_{t_0}^{t_f} \frac{aM}{g(-S_w M'^2 C_s - \cos \gamma + T_w \sin(\alpha + \delta))} d\gamma
\]

The minimum time problem \(\rightarrow\) Hard constraint problem \(M(\gamma_f) = 0.8\)

Nonlinear programming problem

Minimize

\[
j' = \frac{t_f - t_0}{2} \sum_{k=0}^{N} w_k \left(\frac{a\dot{M}(\gamma_k)}{g(S_w \dot{\dot{M}}(\gamma_k))} \right)^2 C_s + T_w \sin(\dot{\alpha}(\gamma_k) + \delta(\delta_k)) - \cos \gamma_k
\]

Subject to

\[
\sum_{k=0}^{N} a_k t_k(\gamma_k) = \frac{-S_w \dot{\dot{M}}(\gamma_k)}{g(S_w \dot{\dot{M}}(\gamma_k))} C_s + T_w \cos(\dot{\alpha}(\gamma_k) + \delta(\delta_k)) - \sin \gamma_k
\]

Subject to path constraints

\[
|\dot{\gamma}(\gamma_k)| \leq 20^\circ \text{ and } |\ddot{\gamma}(\gamma_k)| \leq 72^\circ
\]

with end point conditions

\[
e_0(x_0) = \dot{M}(\gamma_0) = M_0, \text{ where } M_0 \in [0.3, 0.8]
\]

\[
e_f(x_f) = \dot{M}(\gamma_f) = 0.8
\]
Mach and AOA Vs Flight path angle
Flight path angle history

Effect of reducing the AOA
Effect of reducing the AOA on Mach number along with the flight path angle

Effect of the number of grids
Selection of number of grids

<table>
<thead>
<tr>
<th>No. of grids</th>
<th>Computational time</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>0.899679</td>
</tr>
<tr>
<td>10</td>
<td>1.022969</td>
</tr>
<tr>
<td>12</td>
<td>1.102450</td>
</tr>
<tr>
<td>20</td>
<td>1.652399</td>
</tr>
<tr>
<td>30</td>
<td>3.314869</td>
</tr>
</tbody>
</table>

Intel® Core™ 2 Quad CPU
Q6600 @2.40 GHz, 1.98GB RAM
Software: MATLAB 7.4

- The number of grids for analysis: 20
- 20 grids are comparable with 30

Note: Real-time implementation in “C” or “Assembly language” is expected to be much (at least 50 times) faster than the MATLAB Code

Comparison of Chebyshev and Legendre approximation

Both lead to identical results!
Conclusions: Missile-turning Problem

- Real-hemisphere engagement is feasible (no need of “dog fight”!)
- Minimum-time flight path angle reversal is feasible with “realistic control force”
- Promising numerical results
 - Computationally very efficient & is a viable tool for optimal guidance
 - Chebyshev and Legendre approximations lead to identical results (serves as a verification)

References on Pseudo-spectral Methods for Optimal Control

Thanks for the Attention....!!

questions ... ??