Web Course: Fluid Mechanics Prof. Gautam Biswas Prof. S.K. Som Download PDF

FLUID MECHANICS

 Module Topics Introduction 1.1 Definition M1 C1 L1 1.2 Science of fluid mechanics M1 C1 L1 1.3 Fluid properties M1 CI L1 1.4 Capillarity M1 C1 L2 1.5 Surface tension M1 C1 L2 1.6 Compressibility M1 C1 L2 1.7 Units and Dimensions M1 C2 L4 1.8 Normal and shear stresses in fluid flows M1 C2 L3 1.9 Measurement of fluid velocity Regimes of Fluid Flow 2.1 Continuum and free molecular flow M1 C1 L1 2.2 Inviscid and viscous flows M1 C1 L2 2.3 Incompressible and compressible flows M1 C1 L2 2.4 Newtonian and non-newtonian flow M1 C1 L2 2.5 Aerodynamic force and moments M3 C6 L18 2.6 Dimensional analysis M3 C6 L17 2.7 Non-dimensional parameters M3 C6 L18 Fluid Statics 3.1 Pascal's law M1C2 L3 3.2 Types of forces on fluid systems M1C2 L3 3.3 Measurement of pressure M1C2 L4 3.4 Manometers and gauges M1 C2 L4 3.5 Hydraulic devices 3.6 Forces on partially and fully submerged bodies (curved surfaces) M1 C2 L5 3.7 Buoyancy M1 C2 L5 3.8 Stability of floating bodies M1 C2 L5 3.9 Centre of gravity and Metacentric height M1 C2 L5 Description of Fluid Motion 4.1 Lagrangian and Eulerian methods M2 C3 L6 4.2 Description of properties in a moving fluid M2 C3 L6 4.3 Local and material rate of change M2 C3 L6 4.4 Equation of conservation of mass for control volume M2 C4 L9 4.5 Streamlineas, pathlines and streaklines M2 C3 L7 4.6 Vorticity and circulation M2 C3 L8 4.7 Laws of vortex motion M3 C5 L14 4.8 Translation, rotation and rate of deformation of fluid particle M2 C3 L8 Equations of Fluid Motion 5.1 Euler and Navier Stoke's equation M2 C4 L12, M4 C8 L24 5.2 Derivation of Bernoulli's equation for inviscid and viscous flow fields M2 C4 L13 5.2 Derivation of Bernoulli's equation for inviscid and viscous flow fields M2 C5 L14 5.3 Momentum equation in integral form M2 C4 L10 5.4 Angular momentum equation in integral form M2 C4 L10 Inviscid-Incompressible flow 6.1 Condition on velocity for incompressible flow M3 C7 L20 6.2 Laplace equation M3 C7 L20 6.3 Potential function M3 C7 L20 6.4 Stream function M2 C4 L10 6.5 Basic elementary flows (uniform, source, doublet, vortex) M3 C7 L20, L21 6.6 Superimposition of elementary flows M3 C7 L21 6.6 Superimposition of elementary flows M3 C7 L23 6.7 Non lifting and lifting flow over circular cylinder M3 C7 L22 6.8 Pressure distribution over circular cylinder in real flow M3 C7 L22 6.9 Kutta-Joukowaski's theorem M3 C7 L23 6.10 Generation of lift M3 C7 L23 6.11 Lift on airfoils M3 C7 L23 Introduction to Viscous flows 7.1 Qualitative aspects of viscous flows M4 C8 L24 7.2 Viscosity and thermal conductivity M1C1L1 7.3 Phenomenon of separation M5 C9 L29 7.4 Navier Stokes equation in vector form M4 C8 L24 7.4 Navier Stokes equation in vector form M4 C8 L25 7.5 Viscous flow energy equation 7.6 Exact solutions to NS equations M4 C8 L25 7.7 Plane Poisuille flow M4 C8 L25 7.8 Couette flow M4 C8 L26 7.9 Hagen- Poisuelle flow M4 C8 L26 7.10 Hele Shaw flow 7.11 Flow through co-rotating cylinders M4 C8 L26 7.12 Transition from laminar to turbulent flow M5 C9 L31 7.12 Transition from laminar to turbulent flow M5 C10 L32 7.13 Turbulent flow in circular pipe M5 C10 L32 L34 Introduction to Incompressible Boundary Layer 8.1 BL Concept M5 C9 L28 8.2 BL Properties M5 C9 L28 8.3 Derivation of Prandtl’s BL equation M5 C9 L28 8.4 Blasius solution M5 C9 L28 8.5 Karman’s integral equation M5 C9 L29 8.5 Karman’s integral equation M5 C9 L30 8.6 Turbulent BL over a flat plate M5 C9 L30 8.6 Turbulent BL over a flat plate M5 C10 L34 8.7 Skin friction drag M5 C9 L29 8.8 BL control M5 C9 L29 (Separation), L31(Control) Dimensional Analysis and Similitude 9.1 Buckingham's theorem M3 C6 L19 9.2 Non-dimensional groups M3 C6 L19 9.3 Geometric, Kinematic and Dynamic similarity M3 C6 L17 9.4 Applications M3 C6 L19 Elements of Compressible Flow 10.1 Compressible flow properties M6 C12 L38 10.2 Total enthalpy M6 C12 L40 10.3 Total temperature M6 C12 L40 10.4 Temperature and pressure ratio as a function of mach number M6 C12 L40 10.5 Mass flow parameter M6 C12 L40 10.6 Isentropic area ratio A/A* M6 C12 L40 10.7 Velocity-area variation M6 C12 L40 10.8 2D small amplitude wave propagation M6 C12 L39 10.9 Adiabatic steady flow ellipse 10.10Description of flow regime M6 C12 L38 10.11 Introduction to oblique and normal shock waves M6 C12 L41 10.12 Working out solutions through gas tables/ chart

 Site Maintained by Web Studio, IIT Madras.